[Supporting Information]

Multifold Enhancement of Loose-Nanofiltration Membrane Performance by Intercalation of Surfactant Assemblies

Linglong Shan^{1,2}, Yuanzhe Liang³, Liudmyla Prozorovska³, G.

Kane Jennings⁴, Shulan Ji¹ and Shihong Lin^{2,4}*

¹Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China

²Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States

³Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States

⁴Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States

*Corresponding author: email: <u>shihong.lin@vanderbilt.edu;</u> Tel. +1(615)322-7226

Preparation of polyelectrolyte films on Au/Si substrates for IRRAS characterization

The clean Au/Si substrates were immersed in 1mM solution of mercaptoacetic acid in ethanol for 14 hours, subsequently washed with ethanol, water, ethanol, and dried in a stream of nitrogen. The deposition of the negatively-charged self-assembly monolayers (SAMs) was confirmed by contact angle goniometry (the change in advancing water contact angle from $75^{\circ}\pm3$ for unmodified Au/Si substrates to $5^{\circ}\pm3$ upon SAM deposition was observed for all samples). The SAM/Au/Si substrates were first immersed in aqueous PEI solution (1.5 g/L) for 30 min, then rinsed with DI water, then immersed into aqueous SDS solution (3.5 g/L) or PSS solution (1.5 g/L) for 30 min with subsequent DI water rinsing. The procedure was repeated until the desired number of layers was obtained.

FTIR spectrum of hydrolyzed PAN membrane

Figure S1. ATR-FTIR spectrum of hydrolyzed PAN membrane

Water contact angles of different membrane samples

Figure S2. Water contact angles of the different membrane samples. Left: PAN membrane; Middle: Crosslinked PAN-(PEI/PSS)₃ membrane; Right: Crosslinked PAN-(PEI/SDS/PSS)₃.

Selective layer	Substrate	Fabrication method	Permeability	Rejection	Reference	Label in
composition	composition		(LMH/bar)			Fig. 3D
Polyamide	Sulfonated	-	3.3	99%	41	а
	polyethersulf					
	one					
Poly(ethylene	Polyethersulf	UV-initiated graft	3.5	95%	42	b
glycol) methacrylate	one (PES)	copolymerization				
(PEGMA)						
Zn-Al LDH/	PSf	Interfacial	1.69	92.3%	43	с
Polyamide		polymerization				
Zn-Al LDH/	PSf	Interfacial	2.37	89.8%	43	d
Polyamide		polymerization				
PEI/PSS	Polyacrylonit	Layer by layer	21	97.1	40	e
	rile (PAN)	assembly				
B-cyclodextrin	-	Phase-inversion	5.7	76%	44	f
polyurethane						
(b-CDPU)/polysulfo						
ne						
TiO ₂ /PEI/PSS	PAN	Layer by layer	15.4	79%	45	g
		assembly				
Polyamide	Sulfonated	-	13.8	74%	41	h
	polyethersulf					
	one					
	PSf	Interfacial	1.63	62%	46	i
Graphene oxide/		polymerization				
Polyamide						
SiO ₂ /PDMS	Polysulfone	Dipcoating	5.3	59.7%	45	j
	(PSf)					
Graphene oxide/	PSf	Interfacial	1.79	32.8%	46	k
Polyamide		polymerization				
Grapheme oxide	-	Phase inversion	60	23.7%	47	1
/poly(vinylidene						
fluoride)						
Grapheme oxide	-	Phase inversion	~108	~28%	47	m
/poly(vinylidene						
fluoride)						
Grapheme oxide/	-	Non-solvent	90	~97%	48	n
TiO ₂ /polysulfone		induced phase				
		separation				
TiO ₂ /polysulfone	-	Non-solvent	~145	~88%	49	0
		induced phase				

Table S1. Performance (permeability and HA rejection) of other LNF membrane reported in literature.

	separation		