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a b s t r a c t

Wettability of titanium thin/tunable liquid/gas diffusion layers (TT-LGDLs) may affect the oxygen bubble
dynamics and detachment process, and impact the performance (cell voltage) in proton exchange
membrane electrolyzer cells (PEMECs). In this study, a silane monolayer is applied to tune the TT-LGDL
wettability for the first time. The ultra-fast and micro-scale oxygen gas bubble dynamics and the two-
phase flow in the channel are studied in situ for hydrophobically treated and hydrophilic titanium
thin/tunable LGDLs (TT-LGDLs) with a high-speed and micro-scale visualization system (HMVS). The
HMVS shows that the micro oxygen bubbles occur only along the CL/TT-LGDL interfaces at the rim of
pores on TT-LGDLs. Bubbles more easily coalescence to form a large one in hydrophobic TT-LGDLs. Pore-
scale analysis on the single bubble evolution process shows that the detachment diameter and frequency
of oxygen bubbles in the hydrophobic TT-LGDLs are much larger than those in the hydrophilic TT-LGDLs.
The PEMEC performance with the hydrophobic and hydrophilic TT-LGDLs are very close under 2.0 A/cm2,
which means that the wettability has limited effect on TT-LGDLs mainly due to their thin features and
unique structures with straight pores.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Efficient production of hydrogen can lead to the development of
a “hydrogen society” with close-to-zero emission of pollutants and
limited environmental impact [1e6]. Proton exchange membrane
electrolyzer cells (PEMEC) have been considered as one of the most
promising energy storage/conversion devices for hydrogen pro-
duction, especially when coupled with intermittent sustainable
energy resources, including solar, wind, tides, etc., due to the ad-
vantages of high purity products, quick response, high working
current density, and compact design [7e10]. Many researchers have
focused on developing high-efficiency, low-cost, and durable
PEMECs based on the design of novel materials and structures and
the study of two-phase flow and bubble dynamics in PEMECs, and
the effect of bubble dynamics on the performance is very attractive
[11e16].

The typical PEMEC has a similar configuration of a PEM fuel cell
(PEMFC), which consists of a membrane electrode assembly (MEA)
sandwiched by liquid/gas diffusion layers (LGDLs), bipolar plates
(BPs), and end plates. LGDLs, which are located between the cata-
lyst layers (CLs) and BPs, have a porous structure and must meet
certain requirements. During operation, the water transported
from the BP flow field to the CLs is split into molecular oxygen,
electrons, and protons at the anode side. Then, the produced oxy-
gen gas should be effectively removed from the surface of the CLs to
avoid blocking the water pathway. Electrons are transported from
the CLs through the LGDLs and BPs to the external circuit [17]. Thus,
LGDLs should transport electrons, heat, and reactants/products
simultaneously with minimal losses [18e20]. In addition, the
structures, materials, and properties of the anode LGDLs have a
great impact on PEMEC performance, and efficient mass transport
of liquid water and oxygen gas is critical for stable PEMEC opera-
tion. Despite its importance, however, correlation between LGDL
properties, PEMEC performance, and the oxygen bubble dynamics
has not been extensively studied.

Previous researchers have found that an optimum amount of
coating by a hydrophobic agent on GDLs, such as polytetrafluoro-
ethylene (PTFE) or fluorinated ethylene propylene (FEP), have
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Fig. 1. Schematic for the formation of a monolayer film from n-octadecyl tri-
chlorosilane onto titanium.

Fig. 2. Schematic of the transparent PEMEC.
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important impacts on two-phase transport and PEMFC perfor-
mance by facilitating liquid water removal [21e30]. Zhang et al. in-
situ visualized the liquid water droplet formation, growth, and
detachment on GDLs and catalyst layers, and revealed the liquid
water removal mechanism in flow channels of PEMFCs [31e33].
Mortazavi et al. have investigated the effects of PTFE in GDLs on
water droplet growth and detachment in the flow channels. They
report that the droplet has a smaller detachment size from the GDL
surface with themore hydrophobic PTFE coating due to its effect on
the capillary pressure and surface roughness [34,35]. Koresawa
et al. developed a desired wettability distribution GDL by applying
the hydrophobic coating locally and leaving the other regions un-
changed. They found that the oxygen diffusivity with 10e20wt%
PTFE in the hydrophobic region was increased three times
compared to the GDLs with a homogeneous wettability [36]. Lim
et al. investigated FEP hydrophobic polymer content in a carbon
paper GDL on the power performance of H2/air PEMECs. The con-
tact angle measurements indicate a similar level of hydrophobicity
among GDLs impregnated with different amounts of FEP ranging
from 10 to 40wt% [37]. Litster et al. employed fluorescence mi-
croscopy with a novel methodology to provide new insight into the
dynamic behavior and distribution of liquid water as it is trans-
ported through the gas diffusion layers in PEMECs. The experi-
mental observations led to the postulation of the primary
mechanism for liquid water transport in hydrophobic GDLs [38].
Pasaogullari et al. examined the governing physics of liquid water
transport in hydrophobic GDLs. They observed that capillary
transport is the dominant transport process to remove water from
flooded GDLs [39]. Very few studies have investigated the effects of
GDL wettability in unitized regenerative fuel cells (URFCs) and
PEMECs. Ioroi et al. said that PTFE in hydrogen electrode GDLs has
nearly no effect on cell performance in both FC and EC modes, but
the PTFE in oxygen electrode GDLs had a negative impact on URFC
performance in EC mode and improved performance in FC mode
especially under fully wet working conditions [40]. But on the
contrary, Hwang et al. found that the PTFE coating has no effect on
URFC performance under the EC mode. They also said that the PTFE
coating in titanium GDLs can improve the URFC performance under
both dry and wet conditions in FC mode, while it will negatively
impact the performance under mid-range humidity [41e43]. Kang
et al. developed a novel thin/tunable gas diffusion electrode, and
achieved a very good performance. More significantly, the Pt mass
activity for hydrogen evolution reaction has also been greatly
increased [44].

The treatment of GDLs in PEMFCs have been fully investigated;
however, research focused on ultrathin LGDL hydrophobic treat-
ment in PEMECs has never been reported. The relations between
the GDL wettability, gas bubble dynamics, and PEMEC performance
are still unknown. Therefore, thorough analysis is needed for better
understanding of how thewettability changes the bubble dynamics
and impacts PEMEC performance. In this study, the Ti based thin/
tunable LGDLs (TT-LGDLs) are hydrophobically treated by a
monolayer film from n-octadecyltrichlorosilane in one simple step.
Both the fresh TT-LGDLs and the hydrophobic TT-LGDLs are char-
acterized both in-situ and ex-situ. The wettability of the two TT-
LGDLs are measured by water contact angle. By taking advantages
of the in-house built high-speed and micro-scale visualization
system (HMVS), novel TT-LGDLs and the transparent PEMECs, the
oxygen bubble dynamics, and the two-phase flow phenomenon in
an operating PEMEC are captured in-situ. The PEMEC performance
between the two TT-LGDLs is also tested, and the relation between
the performance and wettability is analyzed. The results obtained
in this study point out the direction for optimized LGDL wettability
and the new method for investigation of the bubble dynamics in
PEMECs.
2. Experimental details

A TT-LGDL was used in this study, and was experimental
measured with a microscope, the thickness is 25 mm, the porosity is
55%, a circular pore shape, and a pore diameter of ~300 mm. In our
previous studies, the TT-LGDLs achieved excellent PEMEC perfor-
mance [20,45e47] and their straight-through pores allow the in-
situ visualization of oxygen bubble dynamics. In order to hydro-
phobically treat the TT-LGDLs, the fresh sample was rinsed in
ethanol, and thoroughly dried, and then placed in a 1mM solution
of octadecyltrichlorosilane in toluene for 1 h. The reason we
selected this molecule is because the trichlorosilane head group
reacts well with many oxide surfaces, and the molecule has a long
chain for good stability and excellent hydrophobicity. The thickness
of this film was estimated to be about 2.5 nm, based on the struc-
ture of the monolayer, the number of carbons and associated bond
lengths [48,49]. The surface roughness should be negligible for the
film itself, as n-alkyl trichlorosilanes are known to form dense
monolayers on titanium [50]. Fig. 1 schematically shows the
structure of the monolayer as prepared from n-octadecyltri-
chlorosilane (CH3(CH2)17SiCl3; C18SiCl3). As established by Mani
et al., the principal binding of the molecule to the oxide surface of
titanium is through SieOeTi bonds with minimal SieOeSi cross-
linking, leading to a densely packed hydrocarbon film.

The specific, designed transparent cell, as shown in Fig. 2, was
used to test the PEMEC performance and to performvisualization of
micro bubble dynamics and two-phase transport. Different from



Fig. 3. Contact angle measurements for (top) treated and untreated TT LGDLs and
(bottom) treated and untreated Ti foil.

Fig. 4. The polarization curves of the hydrophobic and hydrophilic TT-LGDLs.
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the typical PEMECs, the anode transparent PEMEC as shown in the
red box, has an end plate with a window on the center, a trans-
parent plate, a current distributor with flow channels, and TT-
LGDLs, which help to allow optical access to the CL surface. The
transparent plate with flow ports and in-flow channels is used to
transport reactants from the cell inlet to the flow channels, and
products from the flow channels to the outlet of the cell. The cur-
rent distributor is a 500mm thick titanium plate with chemically
etched parallel micro flow channels of 1mm in channel width that
penetrated the entire thickness. TT-LGDLs with a thickness of only
25 mm are used. Since the oxygen bubble dynamics occur at the
micro-scale at a super high-speed, the phenomena cannot be
effectively captured by the normal microscopes or cameras.
Therefore, besides the transparent cell and TT-LGDLs, the HMVS
with a long-working distance is another critical part of the whole
system. The HMVS consists of a high-speed camera (PhantomV711)
coupled with an in-house built optical lens system featured by its
long working distance (>70mm) and a high resolution (<5 mm).
The movie is captured under a frame rate of 3000 fps (frame per
second), and the bubble detachment time within TT-LGDL were
calculated based on the frame rate.

Commercial CCM (Nafion 115 Electrolyzer CCM from FuelCell-
sEtc with 3.0mg/cm2 IrRuOx at anode and 3.0mg/cm2 PtB at
cathode) is employed, and the active area of the CCM is 5 cm2.
Carbon paper (Toray 090 from FuelCellStore) with a 280 mm thick-
ness and 78% porosity is used as a cathode LGDL. Graphite plates
with a parallel flow channel are used as cathode BP. The transparent
cell is connected to the Potentiostat SP-300 (Bio-Logic) system that
was equipped with a 10 A/5 V booster. A liquid pump (KNF Neu-
berger) is used to circulate deionized water at a flow rate of 20mL/
min to the anode.

The sessile drop method is used to measure the contact angle.
The measured TT-LGDLs are placed on the top of a plastic substrate
and a 2 mL droplet of distilled water is dropped from the tip to the
surface of the TT-LGDLs, including the fresh and hydrophobic TT-
LGDLs. The image of the droplet is collected and the contact angle
is measured in this image by the software. Three measurements at
different spots are obtained for each sample and an average is
calculated and reported as the contact angle.

3. Results and discussion

The treated TT-LGDL has a much higher contact angle (127�)
than the untreated one (86�) due to the presence of the dense, low-
energy methyl-terminated monolayer that effectively screens the
interaction between water and titanium, as shown in Fig. 3. These
results show that the monolayer treatment can significantly change
the wettability of the TT-LGDLs. As a control, we also prepared
silane monolayers on non-porous titanium foils. As with the LGDLs,
the presence of the monolayer increases the water contact angle-
din this case, from 68� to 110�. The value of 110� is consistent with
that of a smooth and dense methyl surface and is similar to the
values reported by Mani et al. for silane monolayers on titanium.
The water contact angles on the LGDL are elevated from those on
the Ti foil due to the imparted roughness of the LGDL, which may
stabilize air under the water drop and at the three-phase contact
line.

Both the hydrophobic and hydrophilic TT-LGDLs were evaluated
in the transparent PEMEC at 80 �C. Because the transparent plate is
made of plastic and the current distributor is relative thin, which
may cause a non-uniform pressure distribution along the surface
and thus a larger ohmic loss than that of the conventional PEMECs.
The high frequency resistance (HFR) values under a frequency of
5000 Hz are about 0.24 U*cm2 for the treated TT-LGDL, and about
0.22 U*cm2 for the non-treated one, respectively. The result shows
that the SAM can lead to a very limited changes about ohmic losses.
The performance of the PEMECs is characterized by the IR-free
voltage, which is derived based on polarization curves and high
frequency resistance (HFR), as shown in Fig. 4. The lower voltage at
a given current density indicates better PEMEC performance. As is
shown in Fig. 4, the performance of the hydrophobic TT-LGDLs is a
little bit worse than the hydrophilic one. At the low current density
range (<0.1 A/cm2), the polarization curves are mainly due to the
open circuit voltage (OCV) and activation overpotential. From Fig. 4,
the hydrophobic and the hydrophilic TT-LGDLs have a similar
voltage, whichmeans thewettability of the TT-LGDLs has no impact
on activation loss. At 2.0 A/cm2, the required cell voltage increased
from 1.620 V for the hydrophilic TT-LGDLs to about 1.624 V for the
hydrophobic TT-LGDLs which indicates that the wettability of the
TT-LGDLs has very limited impact on PEMEC performance. With a
2.5 nm thickness, it can be assumed that the monolayer film will
not affect the electrical conductivity of the TT-LGDLs as long as the
temperature is in a range from 20 �C to 80 �C, and also the electrical
contact resistance between TT-LGDLs/CLs and TT-LGDLs/BPs



Fig. 6. The visualization results of pore scale (A) to (D) hydrophobic TT-LGDLs and (E)
to (H) hydrophilic TT-LGDLs at 0.2 A/cm2 and 80 �C.
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[18,51]. In addition, the monolayer does not change the pore mor-
phologies of the TT-LGDLs, which will not influence the activation
loss. The monolayer on TT-LGDLs will only change thewettability of
the Ti TT-LGDLs from 86� to 127�, which may have some effects on
transport loss in the PEMEC. Therefore, the influence of the
monolayer on bubble dynamics, and two-phase transport will be
investigated.

Fig. 5 shows the two-phase flow phenomena comparison at
channel-scale, Fig. 5(A) and (B) are bubble dynamics at 0.2 A/cm2,
80 �C, Fig. 5(C) and (D) are bubble dynamics at 1.4 A/cm2, 80 �C. It
can be found that the most oxygen bubbles in the channel with the
hydrophobic TT-LGDLs are much larger (as shown in Fig. 5(A) and
(C)) than the bubble sizes with the hydrophilic TT-LGDLs (as shown
in Fig. 5(B) and (D)). After the bubble detachment, some bubbles
will collide and then merge with each other to form a large bubble.
Under the same operating conditions, the larger bubbles with
higher surface area and large volume have higher probability to
merge with other bubbles; therefore, the hydrophobic TT-LGDLs
with larger detached oxygen bubbles can lead to larger bubble
sizes within the flow channel than those observed for the hydro-
philic TT-LGDLs. These phenomena are very common in the whole
channel in the PEMECs.

Fig. 6 shows a sequence of images of pore-scale bubble gener-
ation and movement, with photographs of an oxygen gas bubble
appearance, growth, and finally, detachment. The bubble dynamics
are different for different locations, due to the different force bal-
ance in the water flow. Therefore, the oxygen bubbles we chose
with the two different TT-LGDLs are nearly at the same location in
the cell and pore. Fig. 6(A)e(D) and (E) to (H) show the oxygen
bubble generation and growth with hydrophilic and hydrophobic
TT-LGDLs at 0.2 A/cm2 and 80 �C, respectively. Fig. 6 shows that the
oxygen bubbles only generate at the rim of the TT-LGDL pores,
Fig. 5. The visualization results at channel scale: (A) hydrophobic TT-LGDLs and (B)
hydrophilic TT-LGDLs at 0.2 A/cm2 and 80�; (C) hydrophobic TT-LGDLs and (D) hy-
drophilic TT-LGDLs at 1.4 A/cm2 and 80 �C.
which is the same phenomena as compared to our previous
research and can be attributed to the large in-plane electrical
resistance of the CLs [52]. The oxygen bubble will appear at the rim
of the pore, then it will grow and detach within a couple of milli-
seconds. Fig. 6 (C) and (G) show the bubble detachment from the
surface of the two TT-LGDLs. The bubble detachment diameter for
the hydrophilic TT-LGDLs (about 57 mm) is smaller than the hy-
drophobic one (about 84 mm). Also, the bubble detachment time for
the hydrophilic TT-LGDLs (about 0.0057 s) is shorter than the hy-
drophobic one (about 0.0101 s). The reason is that bubbles are
prone to attach on the hydrophobic surface of the treated TT-LGDL
(contact angle> 90�Þ, and easily to detach from a hydrophilic TT-
LGDL (contact angle< 90�). Moreover, this successive bubble
behavior occurs in a repetitive manner at the same points.
Considering the PEMEC performance shown in Fig. 4, we conclude
that the hydrophobic treatment on TT-LGDLs has a negative impact
on bubble detachment, which could increase the transport loss in
the PEMEC, but this result has limited effect on PEMEC performance
under 2.0 A/cm2. Because the advantages of the TT-LGDLs, such as
planar surfaces, straight-through pores, and small thickness, the
transport losses will be limited. Although the monolayer film will
increase the bubble detachment diameter and bubble size in the
channels, the increase of transport loss due to these reasons is very
small compared with the total loss in the PEMEC. Considering that
the monolayer film has no effect on ohmic and activation losses, it
will not have significant influence on PEMEC performance, espe-
cially under 2.0 A/cm2. We expect that the performance of the
hydrophobic TT-LGDLs will be degraded under much higher cur-
rent densities due to the large bubble detachment, which may
cause additional two-phase transport losses in a PEMEC.

4. Summary

In this study, the hydrophilic titanium TT-LGDLs are treated by a
silanemonolayer to change their wettabilities for the first time. The
micro-scale and ultra-fast oxygen bubble dynamics are in-situ
visualized in a novel designed transparent PEMEC with a HMVS.
The results show that the oxygen bubble detachment diameter and
frequency of the hydrophobic TT-LGDLs are much larger than ones
with the hydrophilic TT-LGDLs, and the bubble size in the channel
scale with the hydrophobic TT-LGDLs is much larger than the one
with the hydrophilic TT-LGDLs as well. The PEMEC performance
with the hydrophobic and hydrophilic TT-LGDLs are very close. The
advantages of the TT-LGDLs, such as planar surface, straight-
through pores, and small thickness result in very limited differ-
ence of the transport losses between the hydrophobic and
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hydrophilic TT-LGDLs. The increase of the transport loss due to
these reasons is very small compared with the total loss in the
PEMEC, especially under 2.0 A/cm2. We expect that the perfor-
mance of the hydrophobic TT-LGDLs will be degraded under much
higher current densities, due to the large bubble detachment which
may cause additional two-phase transport losses in a PEMEC.
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