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L National Nuclear Security Administration

Project goal: Characterize interactions of doped cement materials
(Low pH cements and CEM |) with carbonate geologic strata within the
Mount Scopus Group (i.e., limestone, marl, chalk, oil shale) of the
northern Negev, Israel.

Specific objectives:

i) Use laboratory experiments to characterize the reactions and
transport of radionuclides (dopants) and primary matrix
constituents at the interface between carbonate rock types and
cementitious barriers; and,

ii) Demonstrate and benchmark multiphase diffusion reactive
transport models for parameter estimation and to simulate long-
term interactions considering potential intermediate depth
borehole disposal.
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* Guide the selection of the chemically appropriate cement
formulation for the host rocks in Israel

 Provide mechanistic basis and validated models for reactions
and diffusive mass transport at representative rock-cement
interfaces

* Define expected contaminant migration factors
(e.g., effective R and K,) from cement waste form to rock
formation

* Provide input on the safety margin for unsaturated cement
environment (strength, formulation and migration)
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Rocks and cement 1313 tests (L/S=10and 1 1315 tests (diffusion) —
characterization — over range of pH) — calibration of tortuosity,
porosity, mineral calibration of mineral verification of mineral
assemblages reaction set reaction set
W comPIEtEd
Data from Cement/rock i
planning | : Interface Evaluations
cement/rock interface :
. < . * 6 rock types, each with 2 cements
interface modeling - .
. . * Experiments — ca. 1-2 years
experiments prediction : :
e Simulations
Experimental planning
] Experimental data interpretation
measured comparison Long-term prediction

Solids characterization — micro-CT,
Nano-indentation, SEM, LA-ICP-MS
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Model assumptions: Model conditions for experimental case:

1. Each cell is well mixed * 100 years simulated, saturated conditions, 30 C

2. Local equilibrium  1-D, 378 cells, Finite volume

3. C-(N-)JA-S-H solid solutions * No fluxes at external boundaries

4. Multi-ionic diffusion only * Thermodynamic databases — Minteq v4; LLNL,
CEMDATA18 (Lothenbach et al. (2018))

5. Materials intact throughout the * Initial carbonate content — based on 1313 test

entire simulation « Tortuosity — calibrated values

* Porosity — measured values
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Solid Phases Distribution Profiles

§ Simulation Results (100 yrs) - m;yicum

oil shale OPC paste 100 oil shale low pH cement
3 ] ]
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S 70 3 S 70 3
§ 60 3 § 60 3
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Depth (mm) Depth (mm)
BCEM18_CNASH_ss OCEM18_C12A7 OCEM18_C3AS0_41H5_1§ BCEM18_CNASH_ss OCEM18_C12A7 OCEM18_C3F50_84H4_32
OCEM18_C3FS0_84H4_32 OCEM18_Cal OCEM18_Gp OCEM18_Cal OCEM18_Gp BWCEM18_0Ord_Dol
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Oil shale — OPC paste: Oil shale - low pH cement:
* Complete CSH depletion near interface * CSH depletion near interface
* Portlandite depletion e Thaumsite formation
e Ettringite formation * Gypsum formation

* Thaumsite formation (both sides of interface)
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Carbonation Front Progress Prediction ™"~

The location, X, of the moving carbonation
front as a function of cement composition
and conditions, when the relative humidity
R is above 50%, is (Papadakis et al., 1989):

@ OPC paste simulation results

M low pH cement simulation results 4)
4

50 H

O OPC paste projection

Olow pH cement projection ’
, —
40 - L X, = AVt

e X - the location, of the moving carbonation
30 - 2 front (mm)
e A - proportionality constant (mm yr0-)
2o - EIJ t - time (years)
fo) Long-term scenarios (saturated conditions):

10 | ! * Oil shale-OPC: 16 and 51 mm of OPC are
o carbonated in 1,000 and 10,000 years

ﬁ ....... * Oil shale-low pH cement: 6 and 19 mm of
0 ' ' ' ' ' cement are carbonated in 1,000 and
0 20 40 60 80 100 120
Time (years®3) 10,000 yea rs

1 1‘ 1 Estimates for the unsaturated case need to
100 years 1,000 years 10,000 years be addressed

Depth (mm)
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Majors Profiles
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Oil shale — OPC paste Oil shale — low pH cement
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. . . . o~ ~
* Diffusion distance in OPC paste is ~500 mm compared ~100 mm ——100years
in low pH cement as a result of lower tortuosity factor (25 vs 75) - - Interface

and higher porosity (¥25% vs ~16%)

* Significant change in oil shale pore water chemistry is observed

deeper in the rock for OPC paste interface
10



OPC paste Interfaces With -,
_ Oil Shale/Marl/Limestone
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Key observations: Depth of altered cement is

* Portlandite and CSH depletion in OPC paste controlled by porewater
carbonate gradient and

porosity/tortuosity? (¢/t?) ratio
* Thaumasite formation in rocks (oil shale and marl) of the rocks

e Ettringite and Hydrogarnet formation in OPC paste

*CO; 2 concentrations are dissolved porewater concentrations 11
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Long-term scenarios (saturated conditions):

* Oil shale-OPC: ~16 and ~51 mm of 60 -

OPC are carbonated in 1,000 and

10,000 years 50 -
* Marl-OPC: ~14 and ~43 mm of cement
are carbonated in 1,000 and 10,000 E*
years g
* Limestone-OPC: ~1 and ~4 mm of
cement are carbonated in 1,000 and
10,000 years

Based on simulations results a better
host rock will be a rock with low
carbonate concentration in pore water

OPC paste Interfaces With
Oil Shale/Marl/Limestone
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and high porosity/tortuosity? (¢/t?)
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- *cement.paste MicroCT Sectioning

doped with 500PPM
each of Ce, Cr, Li, U

Aging 1-3 yrs
P
' 100% RH, 30°C
epoxy

SEM/EDS Surface Roughness Polishing
(Triboindenter) i

Micro/Nanoindentation

& Fiducial Placement LA-ICP-MS laser depth &
. _ q . _ . . . .
micro — rocks + cement |magg co-registration concentration proflllng
nano — cement with SEM/EDS

13
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OPC paste

Oil Shale

Limestone

* Provides information about contact area and void volume at interface

* Helps identify features of interest and precise locations for sectioning and
characterization
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doped oil shale/OPC
interface

doped limestone/OPC
interface

Challenges:

* two materials polish at non-doped
different rates, so minimizing IEStne
sample size and hard edges is
necessary |

* dopants reduce polish ability
of the rocks

15
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* Large area mapping utilized to investigate
microstructure, morphology, and chemistry
(major elemental concentrations)

ESEM imaging conditions:
15kV, spot size 3.5, 130 Pa, 600x, pixel dwell time 30us,
resolution 1024x874

EDS collection conditions:
pixel dwell time 30us, frame count 20, process time 5,
resolution 1024x874
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OPC paste

Oil Shale

500pm




Nano and Micromechanical
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Testing

Scanning Probe Microscopy (SPM)

* Provides verification of surface roughness
prior to indentation

* Used to map sample surface features

Microindentation

* |nvestigate mechanical properties across
interfaces and as a function of sample depth

Nanoindentation

* Accelerated Property Mapping (XPM) to investigate hardness and modulus in
close proximity to interfaces

* Grid Nanoindentation to analyze cement phase distribution [upcoming]
- limited to cement due to dopant influence on rock’s ability to polish
— phase deconvolution will help understand impact of trace constituents

18



Accelerated Property
Mapping (XPM

Piezo controlled movement allows
for high-speed collection of nano-
mechanical properties as compared
to standard grid nanoindentation

* maximum single-area
dimensions 85um x 85um

Produces quantitative heat map of
measured mechanical properties

May not account for samples that
require extended creep time, or for
a sample’s strain rate sensitivity

80 &

20

20
X (Hm)

& Modulus
. (GPa

)
140.5

124.5

19



Microindentation VA

National Nuclear Security Administral

* More indents in cement than rock

. . Reduced Modulus from OPC paste to limestone
to capture potential mechanical

1 40 I
gradients .
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* 10 — © sI.o
5 Q .
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0 T
-3000 -2500 -2000 -1500 -1d4bo -500 _,q_',) 500 1000
c

s ere Distance from Interface (um)
Triboindenter Conditions

Berkovich tip
peakload 75mN , * No defined mechanical changes observed
10-15-10 sec — trapezoidal load function )

at the interface between OPC paste and

limestone
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Reduced Modulus from Cement to Oil Shale (constant force)
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OPC Paste o Qil Shale
IS Dy
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-3000 -2500 -2000 -1500 -1000 -500 o 1000

" c

Berkovich tip
peak load 75 mN

Distance from Interface (um)

10-15-10 sec — trapezoidal load function

e Within 300 um of the interface there is a
30% reduction in average moduli of the
OPC paste

21



Accelerated Property ——
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Mapping (XPM) LA LY
|

* Series of square grids
(85 x 85 um) crossing over
interface region

Triboindenter Conditions
Berkovich tip
peak load 2 mN
3-5-3 sec — trapezoidal load function

Reduced Modulus
(GPa)

alteration zone
~285 um

60

40

20

* Nanoscale tip shows
gradually reducing
modulus values in a

100.0 nearly identical

alteration zone as

the micro-
indentation data

150.0

grid width (um)
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[

1.000
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_ AFTER 1 YEAR OF EXPOSURE:
OPC-0il Shale Interface

e Simulation results: an alteration zone of 300 um is estimated

* Laboratory experiments, chemical data: elemental gradients in Ca, Si, Al,
and S in the OPC paste form an alteration zone of ~¥300 um

* Laboratory experiments, mechanical data: suggests reduced moduli values
in OPC paste at a depth of 300 um + 20 um from the interface

OPC-Limestone Interface

* Experiments confirm simulation data showing no chemical or mechanical
alteration zone

Oil shale — OPC paste interface

SEM-EDS Microindentation/XPM Simulation
(elemental gradients) (reduced moduli) results

300 pm 300 pm 300 pm

23
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Experimental:

e Currently in advanced stages of designing approach to laser ablation
measurements

— provides quantification of the dopant concentrations as a function of
distance from the interface

* Perform grid nanoindentation and analyze data to get mechanical
information on the cementitious phases through the alteration zone

* Complete characterization of aged low pH cement interfaces for
comparison to OPC pastes

Modeling:

* Rock-cement interface simulations with dopants (Li, Ce, Cr and U)

* Simulations of unsaturated conditions and moisture transport

24
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Ca43 - moving away from interface
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