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Introduction-Molten Salt Sampling

- MSRs are a type of advanced reactor concept being pursed as a viable
alternative to carbon-emitting or intermittently-available renewable energy
sources. MSRs are unique amongst advanced reactor concepts because:

- Options for utilization of homogeneous liquid fuels that may offer improved safety
margins

- Higher outlet temperatures that can be used to support process heat applications
such as hydrogen generation

* However, limited MSR operational experience and the sensitivity of
reactor safety, safeguards, and operability to salt chemistry provide
incvéi\ll?e for closely monitoring and controlling the salt composition within
an .

- Salt characteristics of interest include redox potential, fissile material inventory,
fission product speciation, and impurity concentrations

- In first-generation MSRs, this function is expected to be facilitated
through isolating small samples of salt from the bulk salt volume for
laboratory analysis
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Image credit: Gallagher, R. (1971). ORNL-TM-3524, Operation of
the Sampler-Enricher in the Molten Salt Reactor Experiment, Oak

Ridge National Laboratory.
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Introduction-Problems with
Mechanical Valves in MSRs

* Within the Molten Salt Reactor Experiment
(MSRE), a system called the Sampler-Enricher
was used for salt sampling.

- The system’s exhibited numerous reliability issues that
motivates its redesign for future MSRs.

« The Sampler-Enricher utilized electromechanical
valves to isolate the primary salt system from the
remainder of the Sampler-Enricher when not being
used for sampling.

* However, these valves exhibited operational
difficulties:

» Impacted travel of sample collection device within
Sampler-Enricher

* Improper sealing and leakage from surfaces
encrusted with salt particles and corrosion
products

 For this reason, Sampler-Enricher redesign efforts
to-date have identified an alternative to traditional
mechanical valves— the “freeze port.” 2 @ANS



Introduction- Freeze Port Concept

The freeze port is an alternative to a traditional
mechanical valve that extends the freeze valves and
meseég flange design concepts used within the P

- Freeze valves and freeze flanges have also been
considered by modern MSR designers.

The salt within the freeze port is initially frozen,
prcl)viding the same sealing function as a closed
valve. N

When the salt in port is thawed (using external
heaters), the port is considered open.

- a sample collection device can be transported through
the open salt to obtain a salt sample.

D_l Heater Coils
Eventually the molten salt sampling system prototy{ae o
(including freeze port) will be tested at the Universi

of Michigan’s FLUoride Salt Test FAcility (FLUSTFA). —

- However, the performance of the freeze port needs to be oo ¢ = 10
modeled prior to being tested in a molten salt Tubing
environment. -
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Questions to be Addressed by Heat Transfer Models

1. Can the freeze port be closed in a time

that is somewhat comparable to what can
be achieved by mechanical valves (<5
minutes)?

3/8"0

2. What happens to the freeze plug during
temperature transients? Can the port

remain closed? o ¢
Tubing

Section of
freeze port
selected for

modeling
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Modeling Approach

Thermally Insulated
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Materials

* Models use the thermophysical properties of eutectic LiF-NaF-KF
(FLiNaK), the salt used within FLUSTFA

Thermophysical Property Value

Melting Temperature, T 727.5 [K]

Latent Heat of Fusion, L; 1.6E6 [J/k(]

Solid FLiNaK Density, p, 2199.2 [kg/m3]

Molten FLiNaK Density, p, 2729.3-0.73(T), [kg/m?3]
Specific Heat Capacity, C, 1906 [J/kg-K]

Thermal Conductivity, kg, 0.8024+0.00056(T-790) [W/m-K]
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Apparent Heat Capacity Method for Modeling Phase Change

. CO(Ij\/I?OL’s default is to use the apparent heat capacity method for phase change
modeling

 Stefan condition does not need to be solved for because melting/freezing front is
implicitly tracked with modified specific heat capacity term (Capp()J found with a
user-defined half-width phase change interval, AT

* Over the phase transition interval, the properties of the material undergoing
phase change are calculated as a weighted average of the solid and liquid
properties dependent on the temperature at a given time step

ATI(X, ¢ _ . o :
: ”;ﬂ ) VT (% 1): Modified Specific Heat Capacity, C,,,
14 {
Pl D [ E " S ;:}TS[KH .E} — va [x E}- l'.hpf T = Tm + ﬁT
oo 7 D Capp = 3 S(O1p/Cpt + 0spoC) + Ly %e Ty — AT < T < Ty + AT
, , ds(t c Twm— AT =T,
VT (X 1)~ KVTi(X.1) = Lup, ~ " |
Credit: M. Tiberga, D. Shafer, D. Lathouwers, M. 1 T =T, + AT;
Rohde, J.L. Kloosterman, Preliminary investigation (T—Tm+AT) B B
on the melting behavior of a freeze-valve for the ”E = N TIAT Tm ~AT<T < Tm + AT
Molten Salt Fast Reactor, Annals of Nuclear 0 Tn— AT = T.

Energy, 132:544-554 (2019).
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Motivation for Model Refinement Studies

- COMSOL has been shown to require relatively high-resolution meshing to _
accurately capture phase change physics when using the apparent heat capacity

method.

« The models are also sensitive to the choice of phase transition interval and time
step (controlled by adjusting relative tolerance), as well as the interplay between
these parameters.

- If temperature change in a time step near the transition region is greater than the transition
interval itself, COMSOL may neglect the latent heat, which results in significant temperature

fluctuations.
Parameter Description Values Used for Values Found in
Freeze Port Model Literature
AT User-defined half-width of phase change transition interval |1, 2, 5, 10, 50 K 4 K[9]
Values between 5-50 K [10]
M Limitation on how large each mesh element can be (smaller | 1E-04, 3E-04, 5E-04 | 1E-3 m [9]
maximum element size corresponds to larger number of
mesh elements simulated)
a Convergence criterion- iteration stops when relative erroris | 1E-04, 1E-03, 1E-02 | 1E-4 [10]
less than relative tolerance (in part responsible for size of
time steps—COMSOL default is to use adaptive time
stepping that is controlled by size of relative tolerance)
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at y=0.5L

Results / Centerline T(t)
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Refinement Studies- Phase Diagrams for Varying Tolerances

* Most significant numerical oscillations were due to the choice of relative tolerance.

« Oscillations impact the “smoothness” of the transition from solid to liquid.

» For eutectic fluids, a smooth and sharp transition from solid to liquid is expected, and thus
heterogeneities shown in 1E-02 and 1E-03 figures below are unrealistic

Time=150 s Surface: Phase indicator, phase 1 (1)
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Solution Times for Refinement Studies

Mesh Parameters

Solution Times (s)

AT (K) M (m) a

1 3E-04 1E-04 7249
2 3E-04 1E-04 4056
5 3E-04 1E-04 1388
10 3E-04 1E-04 631
50 3E-04 1E-04 575
2 1E-04 1E-04 44033
2 5E-04 1E-04 1004
2 3E-04 1E-03 4811
2 3E-04 1E-02 13721
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Conclusions and Next Steps

* The initial refinement studies of the freeze port performance in
COMSOL lend confidence to the component’s ability to function as
expected (i.e., close in a reasonably achievable time period) in a
molten salt sampling system.

 Future studies using COMSOL will be performed using the
simulation parameters identified during the refinement studies (as a
starting point) to investigate:

- Freeze port melting behavior and port opening times;

- Freeze port behavior in off-normal scenarios, such as the event of loss of
external cooling or a temperature increase in the primary salt below the port;
and

- Parametric sensitivity studies
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