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ABSTRACT
With the advances in deep learning, speaker verification has achieved

very high accuracy and is gaining popularity as a type of biometric

authentication option in many scenes of our daily life, especially

the growing market of web services. Compared to traditional pass-

words, “vocal passwords" are much more convenient as they relieve

people from memorizing different passwords. However, new ma-

chine learning attacks are putting these voice authentication sys-

tems at risk. Without a strong security guarantee, attackers could

access legitimate users’ web accounts by fooling the deep neural

network (DNN) based voice recognition models. In this paper, we

demonstrate an easy-to-implement data poisoning attack to the

voice authentication system, which can hardly be captured by exist-

ing defense mechanisms. Thus, we propose a more robust defense

method, called Guardian, which is a convolutional neural network-

based discriminator. The Guardian discriminator integrates a series

of novel techniques including bias reduction, input augmentation,

and ensemble learning. Our approach is able to distinguish about

95% of attacked accounts from normal accounts, which is much

more effective than existing approaches with only 60% accuracy.
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1 INTRODUCTION
Speaker verification (or voice authentication) is a process that ver-

ifies the identity of the speaker based on his/her voice. To some

people, such “vocal passwords" might not seem to be as common as

PIN codes and facial authentication. However, speaker verification

has already been adopted in many scenes for a long time. Since the

1980s, law enforcement and jurisdiction departments have utilized

voice verification technologies to identify suspects and provident

crimes [2, 42]. Financial service institutions have also used voice

authentication as one of the verification methods for years [38].

Today, with the fast growth of Internet-of-Things (IoT) and voice as-

sistance systems such as Apple Siri, Google Assistant, and Amazon
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Echo, speaker verification is increasing in popularity. By simply

saying “Hi" to the system, a user can easily access his/her account

and receive personalized services.

Compared to the traditional passwords or PIN codes, using the

"vocal passwords" would be much more convenient for customers

to access their smart devices as well as a large number of web

services available on the market. With vocal passwords, customers

will no longer need to create and remember various passwords for

different accounts; simultaneously, it helps mitigate the risks of

leaking or forgetting the passwords. Compared to the recent facial

authentication systems, which bring similar convenience, speaker

verification has its own unique advantages. First, the voiceprint

of a human is quite stable after adulthood [14, 26] whereas facial

features may change once a while because of various factors, such

as aging, growing beard, or wearing new makeup. That means

users might need to update facial authentication more frequently

than vocal authentication in order to ensure accuracy. Second, the

hardware cost for deploying voice authentication is lower than

that of facial authentication. Voice data is typically smaller than

facial data, and hence needs less storage space. Microphones used

to collect voices are also cheaper than high-resolution cameras

needed for facial authentication. These advantages are propelling

the growth of the global voice biometrics market which was valued

at USD 0.69 billion in 2018 and is expected to reach USD 3.91 billion

by the year 2026 [1].

Speaker verification technology has been investigated for nearly

40 years, ranging from the earlier MFCC [28, 29, 50] and GMM [6]

models to the state-of-the-art deep neural network (DNN) models

such as D-vector [17] and Deep-Speaker [24]. The DNN-based mod-

els have exhibited high accuracy (e.g., 95%) of voice verification.

While enjoying the burgeoning performance, DNN-based models

are known to be much more vulnerable to new machine learning

attacks such as adversarial input attacks and data poisoning attacks

than traditional speaker verification models [6, 29, 48]. Both kinds

of attacks aim to mislead the DNN models to misclassify the input

data. Adversarial input attacks [27, 45] achieve the goal by per-

turbing the input data while data poisoning attacks use poisoned

training data to manipulate the victim DNN model. For facial or

voice authentication systems that are developed upon DNN mod-

els, such machine learning attacks impose severe threats to the

web service quality and customer information security. For exam-

ple, some general attacks attempt to lower the overall accuracy of

the authentication system and cause a large number of legitimate

users not able to log into their accounts. Targeted attacks are even

more concerning as attackers may impersonate a legitimate user to

access the user’s account. Although some countermeasures have

been proposed to defend these attacks on DNN-models for image

classification and facial recognition [8], they do not work well in

defending voice recognition models (as shown in our experiments)

due to the fundamental structural differences between the image
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Figure 1: Data Poisoning Attack on Voice Authentication
Systems

data and voice data. Also, it is worth noting that adversarial input

training [11, 27, 45] is not an applicable defense for this targeted

data poisoning attack since the poisoned data is still a normal audio

file and does not contain any perturbed values.

In this work, we aim to tackle a challenging data poisoning

attack on the voice authentication process whereby an attacker

intends to gain access to the targeted victim’s account through voice

authentication. As shown in Figure 1, the targeted data poisoning

attack may occur during the stage of new user registration or user

account update. Specifically, to use the voice authentication, the

user needs to provide several different utterances to let the web

service authentication system learn his/her voice features. If during

the uploading of these training audio files, an attacker injects or

replaces some of the user’s audio files with his own, our experiments

found out an astounding fact that the voice authentication system

would be easily misled to consider both user’s and the attacker’s

voices as legitimate and grant access to both the real user and the

attacker when hearing their voices. In other words, the attacker

would be able to peek and use the user’s account without being

noticed by the real user until the damage is done. It is worth noting

that such an attack is not hard to implement. It is similar to the

recent discussion on injection attacks on facial authentication [8],

where an attacker may exploit the vulnerabilities of the victim’s

home network and router to inject malicious packets [33, 40].

In order to protect the integrity of the voice authentication from

the aforementioned targeted data poisoning attack, an intuitive

idea could be to compare the attacker’s audio files with the real

user’s audio files, and check if there are any differences that can

be utilized to filter out the attacker’s audio files. Unfortunately,

experiments show that no significant differences in the data dis-

tribution of the attacker’s and the victim’s raw audio files can be

found from observing the popular t-distributed stochastic neighbor

embedding (t-SNE). Alternatively, one may think of checking the

differences in the feature vectors generated by the voice recognition

system. Again, no significant differences can be identified by using

t-SNE. This indicates that more advanced approaches are needed

to detect the attackers. In this paper, we propose a deep neural net-

work (referred to as Guardian) that is capable of distinguishing the

feature vectors of poisoned audio files from those of non-poisoned

audio files with more than 95% accuracy. Our approach is generic

to any DNN-based voice authentication model. In the experiments,

we select the popular Deep Speaker model [24] which has a very

high voice recognition accuracy (95%) as the attacker’s target. Since

targeted data poisoning attacks typically aim at only a few victims

at a time to avoid the overall accuracy degeneration of the speaker

verification model which otherwise will raise system alerts, the

ratio between the poisoned data and non-poisoned data is very

low. In order to avoid domain bias, we trained multiple speaker

verification models with different victims selected for each model,

and collected a balanced set of poisoned and non-poisoned fea-

ture vectors for the Guardian network’s training. Furthermore, we

propose an input augmentation approach that combines the poi-

soned and non-poisoned feature vectors in a way that can better

help Guardian network learn the differences between them. The

Guardian network contains two convolutional layers and 2 fully

connected layers. Once the Guardian network is fully trained, it

will not need to be retrained when the speaker verification model

is launched in the field for user registration. Given a new user reg-

istration input, the speaker verification model will feed the feature

vectors of user’s utterances to the Guardian network which will

then output a decision whether the user files contain poisoned data

or not. To sum up, we have made the following contributions:

• We studied the impacts of targeted data poisoning attacks on

voice authentication. Our experiments demonstrate a very

high success rate of such attacks.

• We designed a Guardian neural network that can effectively

defend the targeted data poisoning attack.

• We conducted extensive experimental studies on real datasets.

The results show that our proposed Guardian network is

much more accurate than statistical outlier detection ap-

proaches, traditional machine learning algorithms, and the

latest defense mechanisms for CNN-based facial authentica-

tion models.

The remainder of the paper is organized as follows. Section 2

discusses related work. Section 3 demonstrates the targeted data

poisoning attacks. Section 4 presents the proposed Guardian net-

work. Section 5 reports the experimental results. Section 6 conducts

the security analysis. Finally, Section 7 concludes the paper.

2 RELATEDWORK
Existing machine learning attacks can be classified into three main

categories, which are adversarial input attacks [11, 27, 45, 48], data

poisoning attacks [7, 8, 22, 43, 47, 48] and model stealing attacks

[21, 30]. Since our work is defending a type of data poisoning attack,

we mainly review the existing defenses against data poisoning

attacks in the following.

2.1 Data Poisoning Attacks
The data poisoning attack happens during the model training stage

whereby the attacker injects poisoned training samples in order to

mislead the classifier to assign wrong labels to some testing data.

The typical attack procedure is the following. In many applications

of machine learning, such as authentication systems, the training

data is non-stationary. Both the joining of new users and the leav-

ing of old users will affect the distribution of the whole dataset.

In order to handle such non-stationary data distribution, the clas-

sifier typically needs to be retrained periodically [23]. When the

classifiers are retrained on new samples collected during network
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operation, it gives the attacker a chance to inject poisoned samples

into the training dataset.

According to the effect of the attack, the data poisoning attacks

can be divided into two categories: availability attacks and integrity

attacks [5, 18, 25]. The availability attack could be considered as

an untargeted attack that does not aim at a particular target as it

just aims to degrade the overall performance of the classifier. On

the contrary, the integrity attacks do not want to affect the overall

performance of the classifier to arouse alert. Instead, the integrity

attacks have clear targets for which they want to misclassify. Our

work is tackling such targeted attacks.

There are two main approaches to generating the poisoned train-

ing samples [5, 41]. One is to perturb the original sample using al-

gorithms such as the well-known Fast Gradient Sign Attack (FGSM)

[13] to make the classifier assign attacker desired label to the per-

turbed sample. The other approach is to manipulate the training

sample by changing its correct label to a wrong one [43]. The data

poisoning attack launched to the voice authentication system be-

longs to this second category. However, we would like to stress

that there has not been any study on such attacks on voice authen-

tication systems yet, not to mention the corresponding defense

mechanisms.

2.2 Existing Defenses Against Data Poisoning
Attacks

A popular defense mechanism against data poisoning attacks is

adversarial input training [4, 13, 27, 44, 45, 48]. The key idea is to

add one more class label and train the classifier using the perturbed

samples generated by the same algorithm that the attacker may

use such as FGSM or PGD (projected gradient descent) [13, 16].

The goal is to help the classifier learn the features of poisoned data

along with other normal data so that the classifier may be able

to distinguish the poisoned data from normal data in the future.

However, such defense mechanisms will not be applicable in our

attack scenario. This is because adversarial input training uses the

real samples injected with carefully crafted noises that can mislead

the classifier. In our attack scenario, the attacker does not insert any

noise into his/her voice file. The attacker simply labels his/her voice

file using the victim’s identity. If one wants to directly apply the

adversarial input training here, some voice files need to be randomly

selected to pretend to be attackers and be labeled as “adversarial."

Note that these voice files are normal audio files without noises.

This type of training is simply telling the voice recognition model

to classify the preselected attacker files as “adversarial" while the

voice recognition model gains no knowledge about what the true

attackers’ voice features may look like in the real world.

Another well-known defensive approach is outlier detection,

also known as data sanitization [12, 18, 22, 32, 34, 43, 44]. For ex-

ample, Dai et al. [10] found that poisoned data and non-poisoned

data may follow different distributions, and employ principal com-

ponent analysis (PCA) to filter out the poisoned data. Other types

of classifiers such as SVM and KNN have also been explored to

detect the outliers, i.e., poisoned data [22, 35–37, 39]. However, as

shown in our experimental studies, all of these outlier detection

techniques are not effective in identifying the attacked account

from normal accounts due to the highly similar data distributions

between the feature vectors from the attacked accounts and the

normal accounts.

The most related work to ours is by Cole et al. [8] who examines

a targeted data poisoning attack in facial authentication systems by

assuming that attackers may inject their own facial images into the

user registration phase similar to the injection of attacker’s audio

files in our scenario. They propose a DNN model called DEFEAT to

distinguish the attacked accounts from the normal accounts. How-

ever, our work is more advanced than the DEFEAT model in several

aspects. Specifically, the DEFEAT model mainly utilizes fully con-

nected layers while fully-connected-layer based structure is not

effective in detecting attacked accounts in voice authentication sys-

tems as shown in our experimental studies. Our proposed Guardian

network not only leverages convolutional layers but also incorpo-

rates new input augmentation and ensemble learning techniques

which lead to 90% detection accuracy.

3 DATA POISONING ATTACK ON VOICE
AUTHENTICATION SYSTEMS

In this section, we first introduce our threat model, and then present

the results of the targeted data poisoning attacks against DNN-

based voice recognition systems.

3.1 Threat Model
In this work, we follow the same threat model by the recent work of

targeted data poisoning on facial authentication [8]. The attacker’s

goal is to deceive the voice authentication system into recognizing

the attacker’s voice and the legitimate user’s voice (the victim) as

the same so that the attacker can gain the access to the victim’s web

account via voice authentication. It is assumed that the attacker

has compromised the victim’s home network [3, 33, 40] and is

able to inject malicious messages when the victim communicates

with web services. The attack may trick the user to update his/her

registration information by replacing the normal access page to the

web service with a registration update request, just like a traditional

password update request. Once the victim starts to update his/her

voice authentication, the attacker will replace a few of the victim’s

audio files with his own audio files to be sent to the web service

provider. In this targeted data poisoning attack, there are three

parties:

• Normal users (𝑈𝑛): Normal users are those who have not

been attacked and whose voice authentication is correctly

performed by the voice recognition systems.

• Victim users (𝑈𝑣): Victim users are those whose voice au-

thentication has been poisoned by an attacker.

• Attackers (𝑈𝑎): Attackers are those who conduct the data

poisoning attack on the victim user’s registration.

As a result of the attack, the voice authentication system at the

web service provider site will be trained using both the victim’s

and the attacker’s audio files to register the victim’s account. The

attacker does not need to know any specific parameters of the voice

authentication model at the server side. Such an attack is considered

successful if both the victim and the attacker can access the same

account via the voice authentication (as illustrated in Figure 2). In

other words, the attacker would be able to use his/her own voice

to log into the victim’s web account from any places later on.
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Figure 2: Attacker Gains Access to Victim’s Account via Voice
Authentication

3.2 Attacking DNN-based Voice Recognition
Systems

To perform the above targeted data poisoning attack, we select the

representative and highly accurate DNN-based voice recognition

system Deep Speaker [24]. The Deep Speaker model has achieved

above 95% voice recognition accuracy. Its core architecture is a

deep residual CNN (namely ResCNN) developed based on ResNet

[15]. The ResCNN architecture has 20 layers and each ResBlock

structure contains two convolutional layers with 3 × 3 filters and

1 × 1 stride. A well-known corpus, LibriSpeech, is typically used to

train the model. The input to the ResCNN is 64-dimensional Fbank

coefficients converted from a person’s audio file, from which the

ResCNN generates a 512-dimensional embedding that extracts the

person’s acoustic features. For classification, a triplet loss function

is applied to maximize the cosine similarities of embedding pairs

from the same person and minimize the similarities from different

persons.

We tested the targeted data poisoning attack using the follow-

ing two datasets: LibriSpeech [31] and VCTK [49]. 50% of the Lib-

riSpeech dataset is used to train the Deep Speaker, while the remain-

ing LibriSpeech dataset and the other dataset are used to mimic

the newly registered users and attackers after the Deep Speaker is

launched in the field for service. Specifically, we first train the Deep

Speaker using the audio files of normal users to reach 95% accuracy,

whereby each user has 10 utterances. Then, we randomly select

pairs of victims and attackers to simulate the data poisoning attack

during the user’s voice registration. These pairs include cases where

attackers and victims have similar voices and dissimilar voices. For

each victim, half of their audio files are replaced with the attacker’s,

and all these audio files are labeled using the victim’s identity to

further train the Deep Speaker.

An attack is considered successful if both of the following two

conditions are satisfied: (i) the overall voice recognition accuracy

does not degrade; (ii) both the victim and the attacker are recognized

as victims. Note that if the Deep Speaker matches the attacker’s

voice to the victim’s identity, the detection is considered accurate

because the Deep Speaker does not know the existence of such

poisoned data.

Figure 3 compares the overall voice recognition accuracy and the

accuracy of the victims and the attackers. We vary the percentage of

victims among all the users from 0% to 10%. Since this is a targeted

attack rather than a general attack, we keep the percentage of

victims no higher than 10%. The number of audio files injected by

(a) Overall Accuracy (b) Accuracy for Attacked Users

Figure 3: Voice Recognition Accuracy Under Targeted Data
Poisoning Attacks

the attacker is half of the victim’s original files. Observe that the

overall voice authentication accuracy under the attack is almost

the same as the situation when there is no attack (the “0%" case).

That means the Deep Speaker system will not notice such targeted

data poisoning attacks by monitoring the change of the overall

accuracy. Moreover, the recognition accuracy for both the victims

and attackers are almost the same and both are above 90%. That

means the targeted data poisoning attack is quite successful.

4 OUR PROPOSED DEFENSE MECHANISMS
In this section, we first examine the underlying cause of the DNN-

based voice recognition models being deceived by the attacker,

and then present our proposed defense mechanism: the Guardian

network.

4.1 Design Philosophy
From the above attack results, we know that it is impossible to

detect such targeted data poisoning attacks by simply checking the

variation in the overall accuracy. Thus, we turn to examine two

other potential approaches for the detection as mentioned in the

introduction. One is to directly compare the raw audio files of the

attacker and the victim to see if there is a way to distinguish them.

The other is to compare the voice feature vectors of the attacker

and the victim generated by the voice authentication system after

feeding their raw audio files.

In practice, it is actually quite challenging to calculate similarities

between the raw audio files due to the differences in the audio length

and content. In order to obtain meaningful analysis results, most

voice recognition systems preprocess audio files by removing mute

portions and converting them to 64-dimensional Fbank coefficients.

In our experiments, each raw audio file is represented as a 160 ×
64 array. Then, we conduct the t-distributed stochastic neighbor

embedding (t-SNE) on the normalized audio files for both normal

accounts and attacked accounts as follows. Specifically, both normal

accounts and attacked accounts need to provide 𝑁 audio files to

the voice recognition system for training. For a normal account,

we randomly split the 𝑁 audio files into two groups, each with
𝑁
2

files. Then, we perform the t-SNE analysis on the two groups to

identify their similarity. As for the attacked account, we group
𝑁
2

victim’s audio files together and compare them with
𝑁
2
attacker’s

files using the t-SNE. The comparison results of the two cases are

shown in Figure 4 (a) and (b), respectively. As we can see, there

is not an obvious difference in the data distribution between the
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(a) Normal Account (b) Attacked Account

Figure 4: Raw Audio Files distributions

normal account and the attacked account. That means comparing

raw audio files may not be an effective way to detect the attackers.

Next, we feed the audio files to the voice recognition model and

examine the output feature vectors using t-SNE. Figure 5 shows the

t-SNE result of 1116 users’ feature vectors. We use a single spot to

represent a single audio file, and each user has ten audio files; thus,

there are 11160 spots in this figure. Then we use two different colors

to denote the two types of the user accounts: normal accounts and

the attacked accounts. From the figure, we find that the feature

vectors of both kinds of accounts follow a similar distribution as all

of them are mixed together. This observation indicates that simple

statistical analysis on feature vectors would not be sufficient to

single out the attackers either.

Figure 5: t-SNE analysis on feature vectors

We suspect that the differences in these feature vectors are hid-

den much deeper than that can be captured by simple statistical

analysis. To develop an effective defense mechanism, we need to

have a better understanding of the root cause of the DNN-based

voice recognition model’s reaction to such targeted data poisoning

attacks. Our hypothesis is the following. The DNN-model tries very

hard to extract common acoustic features from the audio files in the

same user account including both normal accounts and attacked ac-

counts in order to achieve high detection accuracy. Specifically, the

model adopts triplet loss function as shown in Equation 1, whereby

𝑓 (𝑈𝑛𝑖
1

) and 𝑓 (𝑈𝑛𝑖
2

) denote two different audio files’ feature vec-

tors from the same user 𝑖 , 𝑓 (𝑈𝑛 𝑗
) is the feature vector of another

normal user 𝑗 , and 𝛼 is the defined margin of two classes. By min-

imizing the loss function, the model minimizes the differences of

the feature vectors from the same account and maximizes the dif-

ferences of the feature vectors that belong to different accounts.

When it comes to the attacked account, this triplet loss function

works like the one shown in Equation 2, where 𝑓 (𝑈𝑣), 𝑓 (𝑈𝑎) and
𝑓 (𝑈𝑛) denote the feature vectors of input audio files of the victim

user, the attacker and another normal user, respectively. This triplet

loss function when applied to the attacked account actually helps

extract similarities between the victim user and the attacker as they

are considered to be from the same account. As a result, it is hard

to see the distribution differences in attacked accounts and normal

accounts by just using statistical analysis like t-SNE.

L(𝑈𝑛𝑖
1

,𝑈𝑛𝑖
2

,𝑈𝑛 𝑗
) =

𝑚𝑎𝑥 ( | |𝑓 (𝑈𝑛𝑖
1

) − 𝑓 (𝑈𝑛𝑖
2

) | |2 − ||𝑓 (𝑈𝑛𝑖
1

) − 𝑓 (𝑈𝑛 𝑗
) | |2 + 𝛼, 0) (1)

L(𝑈𝑣,𝑈𝑎,𝑈𝑛) =
𝑚𝑎𝑥 ( | |𝑓 (𝑈𝑣) − 𝑓 (𝑈𝑎) | |2 − ||𝑓 (𝑈𝑣) − 𝑓 (𝑈𝑛) | |2 + 𝛼, 0) (2)

Our hypothesis is that the feature vectors generated for the at-

tacked accounts may be deduced from different dimensions of the

input files. Feature vectors from the normal accounts are generated

frommultiple audio files belonging to the same person which would

contain the same cues of the person’s talking habits. Feature vec-

tors from the attacked accounts are generated using two different

people’s audio files which usually exhibit different talking habits.

In order to create similar feature vectors for the attacked account,

the DNN model might need to look into other aspects of the input

files that are likely different from normal accounts.

Hypothesis 1. Let 𝑓 (𝑈𝑛)=⟨𝑧𝑛1, 𝑧𝑛2, ..., 𝑧𝑛512 ⟩ denote the 512-
dimension feature vector associated with all normal accounts, and
𝑓 (𝑈𝑎) = ⟨𝑧𝑎1, 𝑧𝑎2, ..., 𝑧𝑎512 ⟩ denote the feature vector associated with
all attacked accounts. Let 𝑝𝑛(𝑧𝑛 |𝑋𝑛) denote the probability distri-
bution of the normal feature vector given 𝑋𝑛 where 𝑋𝑛 is a subset
of dimensions of the input audio 𝑈𝑛 from all normal accounts. Let
𝑝𝑎(𝑧𝑎 |𝑋𝑎) denote the probability distribution of the feature vectors
in attacked accounts given 𝑋𝑎 where 𝑋𝑎 is a subset of dimensions
of the input audio𝑈𝑎 from all attacked accounts. Our hypothesis is
formulated as follows:

𝑝𝑛 (𝑧𝑛 |𝑋𝑛) = 𝑝𝑎 (𝑧𝑎 |𝑋𝑎), 𝑏𝑢𝑡 𝑝 (𝑋𝑛) ≠ 𝑝 (𝑋𝑎).

As we can see from the previous analysis, 𝑝𝑛(𝑧𝑛 |𝑋𝑛) is similar to

𝑝𝑎(𝑧𝑎 |𝑋𝑎). Our design will aim to find out the hidden differences in

the dimensions that are used to generate the feature vectors, i.e., the

differences between 𝑝 (𝑋𝑛) and 𝑝 (𝑋𝑎). It is worth noting that the

popular adversarial example training methods [27, 32, 34, 44, 45, 48]

cannot be applied here to find the differences in the input files of

the normal user accounts and the attacked user accounts because

the attacker does not perturb any audio files and the attacker’s

own audio files are true audio files that do not have any specially

crafted noises like those in the adversarial examples. Moreover, the

attacker’s audio file is labeled as the victim to receive similar feature

vectors as the victim, and hence the attacker cannot be assigned

another label “adversary" using the adversarial example training.

This leads us to think about the possibility of adding an additional

classifier to be in charge of distinguishing attacked accounts from

normal accounts.
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Figure 6: An Overview of the Defense Framework

Figure 6 illustrates our proposed defensive framework. Specifi-

cally, the feature vectors generated by the voice recognition model

will be fed to our defense mechanism which consists of two com-

ponents. One is our proposed poisoned data discriminator which

will be elaborated on in the following subsection. The other is an

existing fake voice detector, such as DeepSonar [46]. The defense

mechanism will first check if the input is a fake voice or not in or-

der to prevent the attackers from utilizing fake voice generators to

synthesize the victim’s voices. If the voice is deemed as real human

voice, our discriminator will further check whether the voice is from

a compromised user account where voices from two different peo-

ple (i.e., the victim and the attack) are used for the registration. If a

potential attack is identified, the user registration procedure will be

suspended, and human experts can conduct further investigation.

It is worth noting that our defense mechanism only needs to

be trained in house to prevent being poisoned during the service

deployment. In this way, even though the voice authentication

model may be poisoned when accepting new user registrations, the

defense mechanism will not be affected by poisoned data samples

at all. Instead, the defense mechanism will leverage the knowledge

learned from in-house training to detect new poisoned data samples

to ensure the integrity of the voice authentication.

4.2 The Guardian Network
Since conventional machine learning algorithms are having hard

time in distinguishing the feature vectors of the attacked accounts

from normal ones, we resort to the deep learning techniques which

are known to be more capable of approximating complex nonlinear

boundaries of the input data (e.g., feature vectors in our case). We

first tried the structure of a fully connected neural network. How-

ever, the results are not promising as reported in the experiment

section. We then explore the CNN-based structure, which leads to

the design of the Guardian network.

The Guardian network integrates several critical techniques to

overcome the following challenges. The first challenge is the poten-

tial bias in the feature vectors generated by the Deep Speaker model.

This is because the attacker targets only a few victims in the system.

As a result, the majority of the feature vectors belong to normal

accounts and only a small amount of feature vectors are from the

attacked accounts. If we directly connect the Guardian network

with the Deep Speaker, the Guardian network will learn most of

the features from normal accounts but very little from attacked

accounts, which may lead to biased decisions. In order to mitigate

this problem, we trained multiple Deep Speaker models, each of

which has different accounts being attacked. Then, we gather the

feature vectors of the attacked accounts in different models to form

a balanced input dataset for the Guardian network. Specifically,

assume that there are total 𝑛 accounts in a deep speaker system

and 𝜆 of the accounts have been compromised, where 𝜆 << 50%.

We will train
1

𝜖𝜆
Deep Speaker models where 2 ≤ 𝜖 ≤ 1

2𝜆
. We then

gather all the feature vectors from the 𝜖𝜆𝑛 attacked accounts, and

randomly select the remaining (1 − 𝜖𝜆)𝑛 normal accounts. In this

way, we increase the ratio of the attacked account to the normal

accounts from 𝜆: (1-𝜆) to 𝜖𝜆: (1-𝜖𝜆) and obtain a more balanced

training dataset that mitigates AI biases. Figure 7 presents an ex-

ample of this process when there are 5% of poisoned data to each

model.

Figure 7: Generating Unbiased Training Datasets

Each feature vector output by the Deep Speaker has 512 dimen-

sions. Instead of using these 512-dimensional feature vectors as the

direct input to the Guardian network, we further augment the input

data by interleaving two feature vectors of the same account and

arranging them as a 32×32 square. More specifically, let 𝑓𝑖1 and 𝑓𝑖2
denote two 512-dimensional feature vectors from the same account
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Figure 8: Input Augmentation

𝑈𝑖 , and let 𝑒𝑖 denote the 1024-dimensional encoding obtained from

𝑓𝑖1 and 𝑓𝑖2 . Note that this account 𝑈𝑖 may be an attacked account

or a normal account. We first normalize all the values in 𝑓𝑖1 and 𝑓𝑖2
to values between 0 and 255. Then, as shown in Figure 8, the first

32 values of 𝑓𝑖1 are placed in the first row of 𝑒𝑖 , the first 32 values

of 𝑓𝑖2 are placed in the second row of 𝑒𝑖 , the second 32 values of 𝑓𝑖1
are placed in the third row of 𝑒𝑖 , followed by the second 32 values

from 𝑓𝑖2 , and so on. The final 𝑒𝑖 is an interleaved vector obtained

from two feature vectors.

The benefits of such augmentation are manifold. First, the square

shape inputs can take advantage of the CNN structure and avoid

plain padding. The interleaved embedding allows the CNN filters to

compare the two feature vectors dimension by dimension. Second,

the augmented input provides more information that could help

better distinguish attacked accounts from normal accounts. This

can be observed from the comparison of the following two sets of

feature maps. Figure 9 (a) and (b) illustrate the 512-dimensional

feature vectors of two input audio files from a user (say Alice)’s

account without being attacked. If Alice’s account is compromised

by an attacker (say Bob), Alice’s feature vector will be the one

shown in Figure 9 (c) while the attacker’s feature vector is shown

in Figure 9 (d).

Observe that there is certainly a change in the Alice’s feature

vector before and after the attack. There are more blue spots in

the Alice’s unattacked feature vectors than the attacked version.

This is because the Deep Speaker needs to find common features

between the user Alice and the attacker Bob. This phenomenon

to some degree supports our hypothesis that feature vectors from

the attacked account are generated from different dimensions of

the input data. Moreover, it seems that the similar spots in the two

feature vectors from the normal accounts lie in different locations

compared to that from the attacked account. By combining two

feature vectors from the same account as shown in Figure 10, we

may already observe some different patterns in the normal accounts

and the attacked accounts. Normal accounts seem to have more

similar colored spots lining up to form vertical stripes. Our Guardian

network will explore these subtle differences. To further enhance

the separability, we intentionally interleave the attacker’s feature

vector with the victim’s feature vector when training the model.

(a) Alice’s Feature Vector 1
(without attack)

(b) Alice’s Feature Vector 2
(without attack)

(c) Alice’s Feature Vector
(under attack)

(d) Attacker’s Feature Vec-
tor

Figure 9: 512-D Feature Vectors Generated by the Deep
Speaker

(a) Normal Account (b) Attacked Account

Figure 10: 1024-D Interleaved Feature Vectors

Figure 11 presents an overview of the Guardian network’s ar-

chitecture. It contains total 12 layers including two convolutional

layers, associated max pooling layers, drop out layers, and two fully

connected layers. The first convolutional layer has a 4× 4 filter and

a stride of 1× 1, and the second one has a 3× 3 filter and a stride of

1 × 1. After the convolutional layers, there are two fully connected

layers, each of which has a 20% dropout rate. Softmax cross entropy

is used as the loss function. The final output is a probability value

that indicates whether the combined input feature vector is from

an attacked account or not.

When a new user starts the voice registration, he/she provides

𝑚 utterances to the Deep Speaker model which then generates a

512-dimensional feature vector for each user input. These feature

vectors will be further examined by the Guardian network to iden-

tify potential attackers. Since we do not know whether the new

user is under attack and which one of the feature vectors may be

from an attacker, we randomly pair the𝑚 512-dimensional feature

vectors to create𝑚 1024-dimensional interleaved embeddings as the

input for the Guardian network. This will yield𝑚 prediction results.

The interleaved embedding is obtained from one attacker’s feature

vector and one victim’s feature vector, or from both normal user’s

feature vectors. In order to minimize the prediction uncertainty,
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Figure 11: The Architecture of Guardian

we employ the KNN (K nearest neighbor) classifier to aggregate

the prediction results to produce the binary decision: normal or

attacked. Specifically, during the training of the Guardian network,

𝑚 1024-dimensional interleaved feature vectors are used for each

user account to produce𝑚 probability values. The𝑚 probabilities

are treated as a𝑚-dimensional point for each user. Similarly, the𝑚

probability values obtained from the new user registration are also

represented as a 𝑚-dimensional point (denoted as 𝑃𝑡𝑛𝑒𝑤 ). Then,

we search the current dataset to find the top K nearest points to

𝑃𝑡𝑛𝑒𝑤 . If more than
𝐾
2
of the nearest neighbors are from the normal

accounts, the new user will be labeled as normal. Otherwise, the

new user will be considered under attack.

Figure 12 summarizes the complete process of the defense mech-

anism which consists of four main phases:

(1) Generating Unbiased Training Data: We train multiple

Deep Speaker models to obtain a balanced set of normal

accounts and attacked accounts without affecting the real-

istic settings in the real world applications where attacked

accounts typically exist in a small percentage.

(2) Input Augmentation: We propose a new way of input

augmentation by interleaving feature vector pairs from the

same accounts. The augmented input data provides more

knowledge to better train the deep neural network.

(3) Deep Learning: We design a convolutional network to un-

cover the hidden differences in the feature vectors from

attacked and normal accounts.

(4) Prediction Aggregation: We leverage the power of ensem-

ble learning and calculate multiple prediction results for each

given user. We aggregate the prediction result using KNN

to reduce the uncertainty in the prediction and enhance the

overall prediction result.

5 EXPERIMENTAL STUDIES
In the experiments, we use two datasets: LibriSpeech [31] and VCTK

[49]. The LibriSpeech and VCTK datasets contain audio files from

2484 and 108 people, respectively. For each person, we randomly

select 10 audio files, and most of the audio files are several sec-

onds long. 50% of LibriSpeech dataset users are used to train Deep

Speaker models. 10 Deep Speaker models are trained by varying

the weight initialization and the set of users being attacked. We

evaluate the scenarios when the percentages of attacked users are

5% or 10%. For the Guardian network, 10 interleaved feature vectors

are generated for each account and the value 𝐾 is set to 11 for the

KNN classifier. To choose the optimal 𝐾 value, we first plot the

curve of the error rate and 𝐾 with 𝐾 varying from 1 to 30. Then,

according to the graph, we select the 𝐾 value with the projected

minimum error rate.

We compared our Guardian network with SVM, KNN, and a 14-

layer fully connected (FC) network. The SVM and KNN represent

the existing outlier-detection based defense mechanisms. The fully

connected network resembles the latest defense mechanism [8]

proposed for data poisoning attacks against facial authentication

systems. The models used for comparison do not adopt any of our

proposed techniques including bias reduction, input augmentation

and result aggregation. These models are directly connected to the

Deep Speaker and take 512-dimensional feature vectors as input

for training and testing.

All the experiments were conducted on a computer with Intel

i9-10900X CPU@3.7GHz, NVIDIA GeForce RTX 3090 GPU, and

64GBs of memory. In all the experiments, our Guardian model takes

about 25 minutes for training, and only 3.3 seconds for validating a

user. In what follows, we focus on evaluating its effectiveness in

terms of prediction accuracy and recall as defined in the following

equations.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑈𝑠𝑒𝑟 𝑇𝑦𝑝𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑁𝑒𝑤 𝑈𝑠𝑒𝑟𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠

5.1 Varying the Percentage of Attackers
In the first round of experiments, we aim to compare the perfor-

mance of our Guardian network with conventional machine learn-

ing approaches and the latest defense mechanism that used only

fully connected layers (denoted as “FC" in the figures) [8]. Table 1

shows the prediction accuracy and recall when there are 5% and

10% of poisoned user accounts. In both cases, we observe that our

proposed Guardian network has achieved around 95% detection

accuracy and recall, whereas other approaches have less than 60%

accuracy and lower recall. The recall of the Guardian is also much

higher than the other three approaches. These can be attributed

to the series of techniques adopted by the Guardian network. The

results clearly demonstrate the significant benefits of bias reduction,

input augmentation, convolutional layers and ensemble learning.

Table 1: Datasets with 5% and 10% Attacker Accounts

Poisoning Ratio Method Accuracy Recall

5% Attacker Accounts SVM 0.543 0.754

KNN 0.520 0.583

FC 0.639 0.804

Guardian 0.950 0.953

10% Attacker Accounts SVM 0.488 0.452

KNN 0.520 0.528

FC 0.529 0.588

Guardian 0.939 0.910
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Figure 12: The Data Flow of the Guardian Network

In addition, we observe that the recall of the Guardian network

drops slightly but is still around 90% when the percentage of at-

tacked accounts is doubled. The SVM, KNN and fully connected

network have been affected much more than the Guardian network.

Specifically, the recall of SVM has been cut by almost half, and the

recall of KNN and fully connected network drop below 60%. This is

likely because the increased number of attacked accounts makes

the Deep Speaker model fit the attacked accounts better; as a result,

the resulting feature vectors from the attacked accounts become

even harder to distinguish from normal accounts. However, the

experimental results show that our proposed Guardian network is

still quite robust with the increase of the amount of attacks. We

also argue that it is unlikely that attackers would have compro-

mised a large percentage of user accounts (e.g., > 50%), which

not only requires the attackers to devote significant resources but

also increases their chance of being captured during the network

interception attack.

5.2 Effect of Bias Reduction
In this round of experiments, we are interested in examining the

effect of our bias reduction technique alone. Table 2 shows the

detection accuracy and recall with and without the bias reduction

technique. The percentage of poisoned accounts is set to 5%. The

version without bias collects training data from only one Deep

Speaker model and has the ratio of the attacked accounts to the

normal accounts as 1:20. The version with bias reduction used

4 Deep Speaker models and increased the ratio of the attacked

accounts to the normal accounts to 1: 5.

Observe that the versions with and without the bias reduction

technique have similarly high overall accuracy. However, the re-

call of the version without the bias reduction is extremely low, i.e.,

less than 30%. That means without the bias reduction, the model

can only detect about 30% of attacked accounts. The reason the

overall accuracy is similar in two versions is because the number

of normal accounts is dominant (i.e., 95%) and the version without

bias reduction has no problem identifying normal accounts. After

applying the bias reduction technique, the recall has been signif-

icantly improved to over 95%, which indicates the advantages of

Table 2: Effect of Bias Reduction

Bias Reduction Accuracy Recall

No 0.986 0.266

Yes 0.943 0.952

bias reduction. In addition, we learn that it is not necessary to train

10 Deep Speaker models to reach 50-50 ratio of attacked and normal

accounts in the training samples. The Guardian network already

yields satisfactory performance without a fully balanced training

dataset, which reduces the training cost.

5.3 Effect of Input Augmentation
We also evaluate the effectiveness of our proposed input augmen-

tation, which interleaves a pair of feature vectors from the same

account. Specifically, we modify the Guardian network to take the

512-dimensional feature vectors generated by the Deep Speaker

model as input. We still keep the bias reduction and ensemble learn-

ing techniques for the 512-D Guardian network so as to single out

the effect of the input augmentation. We compare this modified

Guardian network with the Guardian network that has the input

augmentation and takes 1024-dimensional feature vectors.

Table 3: Effect of Input Augmentation

Input Type Accuracy Recall

512-D (Original) 0.663 0.350

1024-D (Augmented) 0.944 0.952

Table 3 reports the performance of these two networks. We

can observe that a significant performance improvement has been

achieved by the input augmentation technique for both the accuracy

and recall. Specifically, the accuracy has been increased from 66%

to 95%, and the recall has been increased from 35% to 95%. This

is because when 512-dimensional feature vectors are used, the
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convolutional layers only study the spatial relationship in a single

vector. The interleaved 1024-dimensional feature vectors give the

convolutional layers an opportunity to compare the features from

the attacker and victim dimension by dimension, and hence lead to

better classification capabilities.

5.4 Effect of Ensemble Learning
In Table 4, we show the performance of two versions of the Guardian

network with and without ensemble learning. The one without

ensemble learning conducts only one prediction by taking a single

1024-dimensional feature vector from a randomly selected pair

of 512-dimensional feature vectors from a new user account. The

one with the ensemble learning conducts 10 predictions from 10

randomly selected pairs of the 512-dimensional feature vectors

from the same user account.

From the figure, we can see the improvements on both accuracy

and recall after adopting the ensemble learning technique. The

increase in recall is much more significant than the accuracy. The

reason is the following. As aforementioned, we do not know which

input from the new user has been poisoned. The interleaved feature

vectors may not include exactly one vector from the attacker and

one from the victim. The use of ensemble learning helps select

the most confident predictions and hence can identify most of

the attacked accounts. On the other hand, the interleaved feature

vectors from the normal accounts are always from the original

users. Hence, the ensemble learning does not have much impact on

the normal accounts, and the high detection accuracy of the normal

accounts contribute to the overall accuracy of the version without

the ensemble learning.

Table 4: Effect of Ensemble Learning

Ensemble Learning Accuracy Recall

No 0.866 0.458

Yes 0.944 0.952

5.5 Effect of Attackers’ Voices
In the previous experiments, both the victims and attackers are

chosen randomly, which means the voices of the victim and the

attacker could be relatively similar (e.g., of the same gender) or

very different. The attack has been successful in both cases. We

are interested in finding out if an attacker who has a similar voice

as the victim would impose more challenges on Guardian. In this

experiment, we use the Deep Speaker and Guardian models trained

for Section 5.3. Then, we test Guardian against two kinds of at-

tackers. Specifically, we select attackers of the same gender as the

victims to simulate the similar voice scenario. Table 5 compares the

detection accuracy of Guardian under different attack scenarios.

We can observe that the Guardian’s performance is not affected by

the similarity between attacker and victim’s voices.

5.6 Model Transferability
In the last round of experiments, we are interested in learning the

transferability of the Guardian model. We trained the Guardian

Table 5: Effect of Attacker’s Voices

Attacker’s Voices Accuracy Recall

Mixed 0.944 0.952

Same Gender 0.942 0.967

Different Gender 0.942 0.976

model using the LibriSpeech dataset, and then we tested its effec-

tiveness using the data from the LibriSpeech and VCTK dataset,

respectively. Table 6 shows the performance comparison. It is ex-

citing to see that our Guardian model transfers well to a new data

distribution. Observe that the detection accuracy in both datasets

is similarly high, i.e., 95%. The recall in the new dataset is slightly

lower but still around 80%. This is expected since the data distri-

bution in VCTK is different from LibriSpeech that is used to train

the Guardian model. The reason that the Guardian model has rela-

tively good transferability is likely a combined effect of the multiple

learning techniques adopted by the Guardian, especially the input

augmentation which may play a major role in the transferability.

Table 6: Model Transferability

Dataset Accuracy Recall

Trained on LibriSpeech 0.944 0.952

Tested on VCTK 0.961 0.800

6 SECURITY ANALYSIS
We now analyze potential attacks to our Guardian model. The

first scenario that may seem to challenge the effectiveness of the

Guardian model is if the attacker has a similar voice to the victim.

The similarity here simply refers to how the voice sounds to the

human ears. Fortunately, the voice recognition models have much

better voice identification capabilities than humans. They already

have very high recognition accuracy among a large number of users

whereby users of similar voices inevitably exist. In our experiments

(Section 5.5), we also simulated such a scenario by selecting same-

gender attacker and victims since their voices would bemore similar

than those from different genders. The experimental results show

that our Guardian model performs similarly well in both cases. That

means attackers with similar voices as the victim do not possess

any advantages.

Another scenario is when the attacker knows the existence and

architecture of our Guardian model and attempts to take advantage

of that. The attackers may try to use some existing Text-to-Speech

(TTS) techniques to generate voice files that mimic the victim’s

voices so as to fool the voice authentication model and the Guardian

model. However, even if the fake voices are successfully generated

to fool the voice authentication model and the Guardian model,

they will not be able to escape from the fake voice detector which

is good at distinguishing fake voices from authentic human voices.

We have conducted the following experiments to validate our con-

jecture. First, we used a well-known repository called Real-Time

Voice Cloning [19] to generate fake voices. This repository is an
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implementation of SV2TTS [20]. There are three different neural

network structures in this system, and we use the pre-trained mod-

els they provided during our experiments. We chose 1166 users in

LibriSpeech [31] dataset. Keeping the same settings as that in the

previous experiments, each user has 10 original voice files, and 5%

of user accounts (i.e., victims) contain fake voice files. Each victim

account has 5 original voice files and 5 fake voice files generated by

the Real-Time Voice Cloning system. Table 7 shows the accuracy

of voice recognition before and after the data poisoning attack.

Before the attack, the overall voice recognition accuracy is around

0.991. After some user accounts being injected with fake voices, the

recognition accuracy of both normal accounts and victim accounts

still stay at a very high level as shown in the table. That means the

fake voices have successfully fooled the voice recognition model.

Next, we check how the Guardian model reacts to the fake voices.

Table 8 shows the detection accuracy and recall. From the low recall

rate, we can see that the Guardian model misses the majority of

fake voices.

Table 7: Voice Recognition Accuracy Under Fake Voice At-
tacks

Attack Name Overall Accuracy Recognition Accuracy

No Fake Voice 0.961 NA

5% Fake Voice 0.985 0.938(Victim)/0.956(Attacker)

The results from Table 7 and 8 indicate that both the voice recog-

nition model and the Guardian model are unaware of the fake voice

attack. However, there is an easy way for the service providers to

filter out such fake voices by employing the existing fake voice

detectors such as Deep Sonar [46]. This detector is based on moni-

toring neuron behaviors of the voice recognition system to discern

synthesized fake voices. In order to observe the performance of

Deep Sonar in our system, we trained a brand new Deep Sonar

network for the Deep Speaker using the LibriSpeech dataset. Table

9 shows the high detection accuracy and recall achieved by Deep

Sonar with respect to the fake voice attack. This means Deep Sonar

is a very effective tool to detect fake voices and is powerful enough

to defend against the fake voice attack.

Note that fake voice detectors are a good complement to the over-

all voice authentication system, but cannot replace the function of

the Guardian model since fake voice detectors are only versed at

identifying manipulated voices. The second row in Table 9 shows

nearly zero recall rate with respect to poisoning attacks using hu-

man voices. In other words, Deep Sonar is not able to filter out

authentic human voices when the attacker directly injected their

real voices in the victim’s account like the targeted data poisoning

attack in our case.

Table 8: Guardian with 5% Fake Voice Users

Poisoning Ratio Accuracy Recall

5% Fake Voice 0.967 0.124

Table 9: DeepSonar under Different Types of Attacks

Attack Name Accuracy Recall

5% Fake Voice Attack 0.941 0.939

5% Poisoning Attack 0.891 0.05

Finally, we discuss the scenario when attackers attempt to apply

the idea of Generative Adversarial Networks (GAN) [9] to produce

voice files that can fool the voice authentication model, the fake

voice detector, and the Guardian model. However, it would be ex-

tremely challenging to implement such an attack. Recall that both

the fake voice detector and the Guardian model hide behind the

voice recognition model. As the attacker does not have the specific

parameters of any of these three models, they may train their own

system with the same structures. Since all the three models are deep

neural networks, the back propagation process is very complicated.

In our trial with known system parameters, we are still not able

to make such training converge. Even if the attackers managed to

complete the local training, it is unclear if the locally generated

fake voices will be sufficiently effective to fool the real models used

by their targeted service providers.

7 CONCLUSION
In this paper, we investigate a targeted data poisoning attack that

allows the attacker to impersonate a legitimate user via voice au-

thentication. We propose a novel CNN-based discriminator called

Guardian to help distinguish the attacked accounts from normal ac-

counts. We design a series of advanced techniques for the Guardian

network to obtain balanced training samples and augmented input

feature vectors, which significantly improves the Guardian net-

work’s effectiveness. Our experimental results demonstrate that

the Guardian network achieves around 95% detection accuracy

while existing defense mechanisms only yield 60% accuracy.
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