
Easy-to-Implement Two-Server based Anonymous
Communication with Simulation Security
Adam Bowers

University of Missouri

Columbia, USA

adamconaldbowers@gmail.com

Jize Du

University of Missouri

Columbia, USA

jdwrc@mail.missouri.edu

Dan Lin

University of Missouri

Columbia, USA

lindan@missouri.edu

Wei Jiang

University of Missouri

Columbia, USA

wjiang@missouri.edu

ABSTRACT
Anonymous communication, that is secure end-to-end and unlink-

able, plays a critical role in protecting user privacy by prevent-

ing service providers from using message metadata to discover

communication links between any two users. Techniques, such as

Mix-net, DC-net, time delay, cover traffic, Secure Multiparty Com-

putation (SMC) and Private Information Retrieval, can be used to

achieve anonymous communication. SMC-based approach gener-

ally offers stronger simulation based security guarantee. In this

paper, we propose a simple and novel SMC approach to establish-

ing anonymous communication, easily implementable with two

non-colluding servers which have only communication and storage

related capabilities. Our approach offers stronger security guaran-

tee against malicious adversaries without incurring a great deal

of extra computation. To show its practicality, we implemented

our solutions using Chameleon Cloud to simulate the interactions

among a million users, and extensive simulations were conducted to

show message latency with various group sizes. Our approach is ef-

ficient for smaller group sizes and sub-group communication while

preserving message integrity. Also, it does not have the message

collision problem.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability.

KEYWORDS
anonymous communication, secure multiparty computation

ACM Reference Format:
Adam Bowers, Jize Du, Dan Lin, and Wei Jiang. 2022. Easy-to-Implement

Two-Server based Anonymous Communication with Simulation Security.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00

https://doi.org/10.1145/3488932.3523264

In Proceedings of the 2022 ACM Asia Conference on Computer and Communi-
cations Security (ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3488932.3523264

1 INTRODUCTION
Secure end-to-end communication is an essential tool to protect

data confidentiality and personal privacy. Although this mechanism

prevents network providers from accessing user data, they still

know who is talking to whom from message metadata which can

disclose a great deal of information regarding an individual [13, 35].

Thus, only hiding the content of a conversation is not enough. To

prevent metadata from linking users and revealing their private

information, we can utilize anonymous communication tools. In

this paper, anonymous communication means the channel is:

(1) Secure end-to-end: The communication channel between any

two users, e.g., Alice and Bob, is secured. That is, only Alice

and Bob can access the information shared between them.

(2) Anonymous/unlinkable: Only Alice and Bob know they are

communicating with each other. A service provider knows

data was sent or received among a group of people, but it

does not know which two users are actually communicating.

The degree of anonymity depends on the size of the group.

Several methods based on Mix-net [9] have been proposed to create

anonymous communication, such as Loopix [33] and Karaoke [29].

To prevent traffic analysis [21], these solutions also incorporate

either time delay or covering traffic to hide communication patterns

among the users. Like Vuvuzela [38], their security guarantee is

related to Differential Privacy (DP) [5, 17] which offers a weaker

anonymity protection due to its small information leakage. Pung

[3] and MCMix [2] offer stronger anonymity guarantee by adopting

Private Information Retrieval (PIR) [12, 26] and Secure Multiparty

Computation (SMC) [19, 40] techniques respectively. Pung is com-

putationally secure. By “computational”, we mean the protocol does

not leak any information regarding the original messages assum-

ing probabilistic polynomially-bounded adversaries. MCMix can

theoretically achieves information theoretic security that assumes

the adversary has unlimited computing power. Both security guar-

antees are stronger than DP, but information theoretic security is

considered to be the strongest among the three models.

The current implementation of MCMix is not secure against ma-

licious adversaries who can arbitrarily diverge from the prescribed

https://doi.org/10.1145/3488932.3523264
https://doi.org/10.1145/3488932.3523264

execution path of a protocol. More importantly, message loss is

inevitable under MCMix when multiple users simultaneously send

message to the same user. This can cause a situation where honest

users unknowing jam the system to deny communications among

other users. (Details are provided in Section 2.)

1.1 Our Main Contribution
The main goal of this paper is to propose simple and novel so-

lutions to implement an anonymous communication framework

with stronger security guarantees against malicious adversaries.

Specifically, we design novel broadcasting and secret sharing based

two-server protocols for achieving anonymous communication,

which possess several desirable properties:

• Stronger security: Our proposed protocols are information

theoretically secure when one server follows the protocol or

the two servers do not collude.

• Design simplicity: (1) Most operations are sending/receiving

messages which can be easily implemented with servers only

providing storage related functionalities. (2) The computa-

tions on the server side are minimal, and no communications

are required between the servers. (3) Only two non-colluding

servers are needed to implement the proposed protocols.

• Asynchronous dial protocol: The existing solutions require

the users being online and participating in the dial protocol

simultaneously. In our design, users do not need to be online

all the time, and no synchronization is needed among the

parties. Dial protocol allows two parties to establish a “hand-

shake” before starting the actual communication.

• Built-in support for subgroup communication: Suppose the
subgroup size is κ. The existing solutions need to go through
κ rounds and incur κ times of the baseline complexity. How-

ever, if κ ≤
⌊ n
2

⌋
, our protocols can handle subgroup com-

munication in one round without incurring much additional

complexity, where n denotes the group size.

The main drawback of our protocols is adopting broadcasting as a

building block. For Bob to send a message to Alice within a group

of n users, the network will incur about n + 2 messages in our

approach. Comparing to some existing solutions, our approach

incurs higher message complexity when the group size becomes

large but possesses stronger security guarantees and is much easier

to implement. Detailed comparison is given in Section 2.

The rest of the paper is organized as follows: Section 2 presents

the existing anonymous communication platforms and discusses

their limitations. Section 3 provides an overview of the proposed so-

lution and the threat model. Section 4 presents the protocol details.

Section 5 provides security and complexity analyses, and exten-

sions for subgroup communication. Section 6 presents the empirical

results to show the scalability of the proposed solutions. Section 7

concludes the paper with lessons learned and future work.

2 RELATEDWORK
There has been countless research related to anonymous commu-

nication. A good starting place is the survey on secure messaging

[37]. Here we group them into several categories based on their

underlining design principles and security guarantees.

2.1 Mix-Net and Differential Privacy
Mix-net [9] based solutions, Tor [16], Hornet [10], and information

slicing [22], aim to provide highly efficient anonymity from all but

a global adversary. Anonymity is not guaranteed if all links in the

network can be observed [21], but in exchange, they can scale to

millions of users and terabytes of traffic as shown by Tor.

The second set of works Vuvuzela [38], Alpenhorn [30], Stadium

[36], and Karaoke [29] were published in series. They achieve Dif-

ferential Privacy [5, 17] for encrypted conversation metadata and

the latest work, Karaoke, can scale to millions of users. This is done

by shuffling traffic between a subset of hundreds of servers and

verifying protocol execution. The users need to be online every

round, and a party is required to coordinate the start of rounds.

Alpenhorn uses an additional set of servers to derive a shared secret

between two users using identity-based encryption. XRD [28] in-

stead proposes a novel hybrid shuffle that relies on several separate

Mixnets to scale and ensures at least one hop in common between

all chains. Loopix [33] adopts time delay to hide traffic patterns

and a number of servers to improve system response time. cMix

[8] also employs mix-net design but can shuffle messages faster by

not using public key operations. All these solutions assume that at

least one server is honest and they offer a weaker security because

Differential Privacy, by definition, leaks a small amount of infor-

mation [2]. These solutions can protect message integrity through

authenticated channels, but they cannot achieve this for the ini-

tial messages that are used to set up the channels. Furthermore, a

general framework is proposed in [4] that analyzes the security of

anonymous communication protocols based on Differential Privacy.

2.2 SMC and PIR
Secure Multiparty Computation (SMC) and Private Information Re-

trieval (PIR) can also be used to achieve anonymous communication

with stronger security guarantees compared to Differential Privacy.

Pung [3], a PIR based technique, offers an anonymity of
1

n where

n is the group size, but it assumes the existence of a dial protocol

to connect users and cannot verify message integrity. Talek [11]

is also based on PIR, but it assumes that a group of users shares

a common secret and it cannot detect message modifications by

malicious servers. Riffle [27] is an interesting middle ground in that

any user can access any message and download all messages, or just

download a particular message of interest using PIR. It can verify if

the servers behaved correctly during the message shuffling phase,

but it does not guarantee the users will receive the correct mes-

sages. Riposte [14] and Express [18] use distributed point functions

to implement anonymous communication. Riposte requires three

servers to prevent malicious behaviors. On the other hand, Express

only requires two servers and adopts symmetric key encryption and

message re-randomization to improve efficiency. To our knowledge,

both systems do not provide a mechanism to detect if a message

is modified by a malicious server. In addition, the mailbox owner

need out-of-band channels to distribute the address of a mailbox to

other communicating peers. AsynchroMix [31] and Spectrum [32]

both implement secure broadcasting and do not support end-to-end

anonymous communication.

MCMix [2] is the other anonymous communication protocol

based on SMC, but it is only secure under the semi-honest adversary

model where the servers follow the protocol. Thus, its security

guarantee is weaker than ours. MCMix utilizes an oblivious sorting

protocol [20] to pair up users during dial phase and swap their

messages during conversation phase. The protocol requires at least

three servers, and as long as two servers are honest and do not

collude, anonymity is guaranteed and bounded by the group size n.
However, message integrity cannot be verified or ensured which

our proposed protocol intends to solve. The message complexity

in the entire system is bounded by Ω(ln logn). These complexities

are for sending one or “more” messages. However, how many more

messages can be delivered each round is not clear due to the fact that

starvation could occur whenmultiple senders want to communicate

with the same recipient during each round.

In addition, MCMix has much higher communication round com-

plexity comparing to 1 round in our case. Furthermore, our protocol

allows efficient subgroup communication with amortized commu-

nication complexity O(n) which is more efficient than MCMix. In

summary, the mix-net design generally achieves differential pri-

vacy [5, 17] for encrypted conversation metadata against global

adversaries. Differential privacy offers weaker security guarantee

against the global adversary comparing to MCMix, Pung, and our

approach. Comparing to MCMix and Pung, our solution provides

detectability of malicious behaviors to ensure message integrity.

2.3 DC-Net and other Approaches
The DC-Net [7] inspired approaches, DiceMix [34], Verdict [15],

and Dissent-AT [39], enable a user to anonymously send a message

to a group of users, much like the Dining Cryptographers Prob-

lem. These approaches offer strong anonymity properties, but they

are not designed for point-to-point communication since all users

see every message. To make these solutions work in our problem

domain, each pair of users have to share a secret key, and a user

would need to decrypt every message. If one of the messages can be

decrypted successfully, then the user know he or she is the recipient.

This approach is inefficient since all keys and messages pairs have

to be examined to retrieve the actual messages.

Like our approach, Cloudtransport [6] uses major storage ser-

vices like Dropbox or Amazon. They argue that an authority would

not want to ban a service like Amazon that plays a significant role

in running the country’s infrastructure. Therefore, if citizens use

that service, the authority will not shut down the service without

harming themselves. Users create a rendezvous account within the

service. Then some bridge (a third party) uses the account to upload

a file on the user’s behalf. Finally, another user uses the bridge to

retrieve the file on the user’s behalf. The issue with this work is

that implementation details are not fully specified. For two users to

coordinate file exchange, they either need a third party to facilitate

exchanging information or need some kind of out-of-band commu-

nication. Moreover, it is unclear how to keep user’s information

secure and anonymous from these third parties.

3 DESIGN OVERVIEW
The core idea of the proposed solution is depicted in Figure 1. As

shown, Bob’s messagem is represented with two shares, denoted by

m1, a random bit string of equal length tom, andm2 =m ⊕m1. The

two shares are stored separately at Server 1 and Server 2. Since each

share when viewed individually is random (or pseudo-random in

practice depending on the randomness of the generator), each alone

does not leak any information under the information-theoretical

model (or computational model in practice) regardingm aside from

the length of the message. The length can be hidden by padding

each share up to a maximum allowable message size. Then the

servers can deliver their own shares to users connected to Bob

in the network. By combining these shares locally, Bob’s friends

will be able to retrieve the actual messagem. This setting can be

extended with more than two servers.

Figure 1: Two-Server Framework for Secure Messaging

The approach given in Figure 1 achieves data confidentiality

against the service providers as long as one of the servers follows

the protocol or the two servers do not collude. However, the ap-

proach is not sufficient to achieve end-to-end secure and anony-

mous communication since everyone connected to Bob will receive

his message. At the other extreme, Bob could send a unique mes-

sage to each user in one round of communication. This achieves

anonymity but increases the amount of messages Bob needs to

send. Ideally, if Bob wants to communicate with one person in the

group, he should only need to send a constant number of messages.

Thus, the key challenge is how to efficiently use secret sharing and

the two-server framework to build an anonymous communication

network between any two users in a group.

As the existing solutions, our protocol operates in round, and

each round includes sending and receiving messages. However,

unlike the existing solutions, during each round, our protocol allows

a user to send and receive messages to and from multiple other

users. In addition, the dial protocols (e.g., obliviously connecting

a pair of users before conversing) of the existing work require

participation of all users at the same time. On the other hand, our

dial protocol is asynchronous and independent from the messaging

protocol which provides extra flexibility in practice.

3.1 An Alternative Design based on
Broadcasting and PKI

It is possible to design a simple protocol utilizing broadcasting and

public key infrastructure (PKI), like BAR [25]. In this solution, all

users’ public keys are shared, and there is a single server. To send

a messagem to user i , the sender encryptsm with the public key

pki of user i and sends the ciphertext Epki (m) to the server. The

server collects and forwards these ciphertexts to all users. Thus,

each recipient receives Ω(n) messages in each time step if there are

total n senders. Each user then tries to decrypt all of the messages

it received from the server in every round. This approach can be

improved in the following ways:

• PKI key management at user level is both expensive and

challenging. For instance, to make sure the legitimacy of

the public keys, the users have to send their keys through

different channels directly to the other users.

• A malicious server can refuse to broadcast the messages to

users without being detected. Adding another server can

solve this problem assuming one of the servers is honest.

Our proposed solution also adopts the two-server setting;

however, we eliminate the need of PKI among the users.

• Our approach, combining secret sharing and the two-server

setting, is theoretically more secure than the PKI-based solu-

tion, and it only assumes that the communication channels

between a server and a user is private. Although private

channels are commonly achieved using PKI in practice, more

secure solutions are possible, such as secure communication

based on quantum cryptography (SECOQC).

• PKI can leak information on user identifies. If users want

to remain anonymous in addition to their communication

patterns, PKI may not be applicable.

3.2 Threat Model and Assumptions
The anonymous communication application generally classifies the

participating parties into three categories:

• Users: the entities who communicate with other users in the

same anonymity group or network.

• Servers: the entities who provide anonymous communica-

tion services to the users.

• Global adversary: who can observe the entire network traf-

fics and attempt to identify the end-to-end communication

links between any two users.

The standard threat model adopted by the existing solutions as-

sumes that the users are honest, at least one server follows the

protocol, and the global adversary does not collude with the servers.

Also, the communication channel between a user and a server is

private. To our knowledge, the existing solutions do not consider

the situations where both servers and users are malicious. Initially,

we adopt the same threat model as the existing work, and we later

discuss possible secure extensions of our protocol against both

malicious servers and users.

Since the servers only send/receive messages from the users

and manage the session keys (used for pair-wise communication

between two users), malicious behaviors regarding the servers may

include: not participating in the protocol, modifying the messages

and the session keys. A malicious global adversary can modify and

drop messages. Amalicious user may eavesdrop on other users’ con-

versation. In summary, our initial solution provides the following

security guarantees when either server follows the protocol:

• Anonymity and confidentiality: Connection anonymity and

message confidentiality are achievable. Connection anonymity

refers to the fact that the servers and the global adversary

cannot predict the communication link between a pair of

users better than a random guess.

• Detectability or verification: Malicious behaviors can be de-

tected. In other words, the users are able to verify the in-

tegrity of the received messages.

Later, we propose protocol extensions that combat malicious users

(while still assuming one of the servers is malicious) to prevent:

• Eavesdropping on other users: Our initial design assumes that

each user can only have one account at each sever. If a mali-

cious user creates multiple accounts at each server, the user

may be able to eavesdrop on other users’ communication;

that is, message confidentiality cannot be guaranteed if a

malicious user opens multiple accounts at each server. To

prevent this, we embed Diffie-Hellman key exchange pro-

tocol into the two-server framework that allows a user to

establish secure pairwise communication in the presence of

malicious users.

• Framing the honest server : Malicious users may frame honest

servers by generating messages that do not follow the re-

quired message format. In this case, we need to adopt digital

signature schemes to authenticate the origin of the mes-

sages. However, we do not need PKI or a central certificate

authority, and the two servers and the users work together

to authenticate the keys.

Note that preventing server-user collusion is seemingly impossible

because amaliciousmessage recipient can simply share the received

messages with a malicious server or other entities without being

caught. We are not aware of any existing solutions that can prevent

this type of collusion. Thus, our proposed solutions assume that

the servers and users do not collude and malicious behaviors are

limited to the aforementioned ones.

4 THE PROPOSED PROTOCOL
The proposed anonymous communication protocol is based on

secret sharing and the two-server framework presented in Figure 1.

4.1 Secret Sharing Scheme
Assumingm is a non-negative integer, to secretly sharem between

two servers S1 and S2, first randomly select a value m1 from Zp
where p denotes the domain size for the shares and is sufficient

large to accommodate m. Then m2 can be computed according

to m = m1 + m2 mod p. The secret share mi is stored at Si for
1 ≤ i ≤ 2. If the shares are intended for Alice, Si will sendmi to

her. By combining the two secret shares together, Alice can learnm.

Becausem1 is randomly generated, it does not leak any information

regarding the actual message m. In addition, due to the “+” and

“mod” operations,m2 is also randomly distributed in Zp . That is,
m2 alone does not reveal any information regardingm. Thus,m1

andm2 are called secret shares ofm. The XOR operator ⊕ can also

be used to generate secret shares in our protocol.

4.2 Illustration of the Main Idea
The proposed protocol consists of three phases: session key genera-

tion or dial protocol (one-time only for each communicating pair of

users, Section 4.3), message distribution (Section 4.4) and message

reconstruction (Section 4.5). Each session key is associated with

a specific message recipient, and it is generated by the message

sender. Each key can be used for multiple messages between the

sender and the recipient. Once the key is established, the conversa-

tion can begin. The proposed session key generation protocol has

the same purpose as the dial protocol in the literature. Unlike the

existing solutions, our protocol can be performed asynchronously

without requiring all users to participate at a specific time period.

Thus, our protocol is more flexible. To implement this, we could use

push or poll notification techniques utilized by E-mail applications.

A temporary storage is required at the servers’ side; however, the

storage can be very small since only one connection request to a

user needs to be buffered.

We consider a group of n users registered with two servers, and

their IDs can be the same across these servers. User IDs are managed

by the servers. If a new user joins the network and a user group, the

servers broadcast the user’s ID to the group. If a user already knows

his or her friend’s ID within the group, utilizing the network, the

user can send the friend a secure message to reveal his or her real

identity. If a user leaves a network or a specific group, the servers

will remove the user ID from the groups’ user lists.

To enable secure and anonymous pairwise communication using

broadcasting, the main idea is to divide or partition this group

of users into two randomly generated sub-groups. The message

recipient is placed into different sub-groups across the two servers.

The other users will be in the same sub-groups. In this way, only the

recipient gets two shares of the actual message, and the other users

get only one share ofm. Thus, the resulting partitions/sub-groups

serves as a session key for a pair of users to communicate securely.

Here we provide a concrete example to illustrate the above idea.

Suppose there are a group of five users G = {u1,u2,u3,u4,u5}.
To achieve anonymous communication between any pair of users

in G, two disjoint sub-groups are generated by a random process

performed by the sender, e.g., Bob being one of the users:

• Randomly partition G into two random sub-groups G1 and

G2, such that G1 ∩G2 = ∅ and G1 ∪G2 = G.

Suppose u ∈ G is the message recipient. Based on G1 and G2, the

partitions on S1 and S2 are assigned as follows:

• On server S1: G
S1
1
← G1 and G

S1
2
← G2

• On server S2: without loss of generality, assuming u ∈ G1.

Remove u fromG1 and add it toG2 The resulting sub-groups

are denoted by Ĝ1 and Ĝ2. G
S2
1
← Ĝ1 and G

S2
2
← Ĝ2.

Let’s assume u = u3 for this example, and G1 = {u2,u3,u5} and
G2 = {u1,u4}. We have the following partition on each server:

• GS1
1
= {u2,u3,u5} and G

S1
2
= {u1,u4}

• GS2
1
= {u2,u5} and G

S2
2
= {u1,u3,u4}

The above group partitions can also be represented as a bit vector

assuming the ordering of the user IDs is known to the user. In our

example, the bit vector representations of the these partitions are

given below:

• GS1
1
= 01101 and GS1

2
= 10010

• GS2
1
= 01001 and GS2

2
= 10110

After the partitions are generated, Bob sends either the actual par-

titions or their vector representations to the servers. Suppose Bob

sends an l-bit messagem to u3, then Bob creates random shares

with the following notation convention:mj indicates the shares of

the actual messagem, and the subscript j is the server index.

• m1 ←R {0, 1}
l
andm2 ←m ⊕m1

• m′
1
←R {0, 1}

l
andm′

2
←R {0, 1}

l

For u3 to receivem, Bob sends the following messages:

• m1 → ⟨S1,G
S1
1
= {u2,u3,u5}⟩

• m2 → ⟨S2,G
S2
2
= {u1,u3,u4}⟩

• m′
1
→ ⟨S1,G

S1
2
= {u1,u4}⟩

• m′
2
→ ⟨S2,G

S2
1
= {u2,u5}⟩

The sharesm1 andm2 are sent to S1 and S2 respectively and dis-

tributed to the sub-groups to which u3 belongs. The random mes-

sagem′
1
is sent to the users in the sub-group indexed by 2 (i.e.,GS1

2
)

at server S1. The random message m′
2
is sent to the users in the

sub-group indexed by 1 (i.e.,GS2
1
) at server S2. At the end, each user

receives a pair of messages:

• u1: ⟨m2,m
′
1
⟩ →m2 ⊕m

′
1

u2: ⟨m1,m
′
2
⟩ →m1 ⊕m

′
2

• u3: ⟨m1,m2⟩ →m1 ⊕m2 u4: ⟨m2,m
′
1
⟩ →m2 ⊕m

′
1

• u5: ⟨m1,m
′
2
⟩ →m1 ⊕m

′
2

Obviously, only u3 receivesm1 andm2. As a result, u3 is able to
reconstructm ← m1 ⊕m2. This example only illustrates the key

ideas, and it lacks implementation details such as, how does u3
knowm is the actual message and how do the other users know

the messages they received are not the actual messages? These

questions will be answered in Section 4.4. The generated disjoint

sub-groups/partitions serve as a session key. Our formal group

partition algorithm is presented next.

Algorithm 1 Group-Partition(G,u) → ⟨GS1 ,GS2 ⟩

1: for i = 1 to 2 do
2: Gi ← ∅

3: end for
4: for each ui ∈ G do
5: j ∈R {1, 2}
6: G j ← G j ∪ {ui }
7: end for
8: GS1 ← ⟨G1,G2⟩

9: if u ∈ G1 then
10: GS2 ← ⟨G1 − {u},G2 ∪ {u}⟩
11: else
12: GS2 ← ⟨G1 ∪ {u},G2 − {u}⟩
13: end if
14: return ⟨GS1 ,GS2 ⟩

4.3 Group Partition
Here we generalize the steps given in the previous example assum-

ing n ≥ 2. The key steps are given in Algorithm 1. The number of

sub-groups is the same as that of the servers. Steps 1-3 initialize

each sub-group to an empty set. Steps 4-7 distribute elements in G
randomly to each of the two sub-groups, and the resulting set of

the sub-groups are denoted by GS1
. Steps 9-13 generate GS2

by re-

moving u from one sub-group and adding it to the other sub-group.

4.4 Generating Authenticated Messages
As illustrated in the previous example, the users in the same par-

tition receive the same message, and the number of messages a

user receives is the same as the number of servers, which is two. In

addition, the number of partitions is also equal to 2. Therefore, the

total number of messages that need to be generated by a sender is

four, two of which are the secret shares of the actual messagem.

The rest of messages are randomly generated. Regarding the secu-

rity guarantee, two important issues need to be addressed when

generating these messages:

• The message recipient knows the message received is the

actual message.

• The recipient can detect if the message has been altered by

a malicious server.

To solve the above problems, we propose a way to construct an

authenticated message. Letm be a message:

• m̂ ≡ 1| |m: ifm is real, prepend 1 to it.

• m̂ ≡ 0| |m: ifm is random, prepend 0 to it.

Next we define a scheme to authenticate m̂ where the main idea

is borrowed from [24]. Let q be a prime, such that m̂ ∈ Z+q and

m <
⌊ q
2

⌋
. The authentication function is given as:

C (m̂, r) = m̂ ∗ r mod q, where r ∈R Z
+
q (1)

Then the shares of the message is produced as follows:

• ⟨m1,m2⟩ ← Gen-Shares(C(m̂, r)| |r | |m̂,p)

The Gen-Shares function produces secret shares of C(m̂, r)| |r | |m̂
according to the scheme discussed in Section 4.1 andp orZp denotes
the share domain ofm1 andm2. Whenm is very large, instead of

authenticatingm directly, the authentication code can be computed

based on a cryptographic hash ofm. Adding a hash computation to

our scheme is straightforward, and we will ignore this issue for the

rest of the paper.

Algorithm 2 Gen-Authenticated-Msg(m,p,q) → ®z1, ®z2

Require: m is the actual message, p and q are primes, such that

p > q3 to accommodate the three components ofC(m̂, r)| |r | |m̂
1: m̂ ← 1| |m
2: r ∈R Z

+
q

3: ⟨m1,m2⟩ ← Gen-Shares(C(m̂, r)| |r | |m̂,p)
4: for i = 1 to 2 do
5: r ′i ∈R

{
1, . . . ,

⌊ q
2

⌋
− 1

}
6: r ′′i ∈R Z

+
q

7: m′i ← C(0| |r ′i , r
′′
i)| |r

′′
i | |0| |r

′
i

8: ri ←m′i ⊕mi
9: ®zi ← ⟨ri ,mi ⟩

10: end for

The steps for generating authenticated messages and their shares

are provided in Algorithm 2. The algorithm takes the actual message

m and two prime numbers such that p > q3, andm is less than

⌊ q
2

⌋
.

Steps 1-3 produce authenticated actual message and its shares. Steps

4-10 produce authenticated random messages and their shares. The

purpose of each main step is discussed below:

• Step 1: prepend flag 1 tom to indicatem is an actual message.

• Step 2: generate a random number r , and it is used to authen-
ticate m̂ in the next step.

• Step 3: first, compute the authentication code of m̂, denoted

by C(m̂, r). Then two additive shares of C(m̂, r)| |r | |m̂ are

generated in Zp , denoted bym1 andm2.

• Step 5: r ′i is randomly generated for representing the ith

random message.

• Step 6: r ′′i is randomly generated for committing or authen-

ticating r ′i .
• Step 7: first, r ′i is prepended with a 0 flag to indicate r ′i is a
random message. Then the commitment of 0| |r ′i is computed.

The whole authenticated message is denoted bym′i .
• Step 8: ri is generated bym′i ⊕mi . Thus, ri andmi are two

shares ofm′i .
• Step 9: ®zi denotes the shares ofm

′
i which will be distributed

to the users in the same sub-group.

Steps 5-9 are repeated one more time to produce another authenti-

cated random message and its additive shares.

4.4.1 Distributing Shares. Once the partitions and secret shares are
produced, the users are ready to communicate. Protocol 3 presents

the key steps that instruct the sender to deliver the shares of his

or her message to the servers which in turn send the shares to the

users in the same group. In this protocol, we need to pay special

attention to the two shares ofm, each of which is distributed to one

partition at a particular server.

• Step 1(a): The sender permutes the ordering of r1 andm1 so

that server S1 does not know which of the two messages is

related to the actual message. Without this step, the protocol

is still secure, but it makes easier to provide a simulation

based proof. See Section 5.1 for more details. The permuted

messages are denoted by ζ1.

• Step 1(b): Based on
®ζ1 and ®z2, this step produces ®ζ2 as follows.

If the first message or component of
®ζ1 ism1, thenm2 needs

to be the second component of
®ζ2. This makes sure that only

the targeted user receives bothm1 andm2.

• Step 1(c): The notation ⟨ ®ζ1[1],G
S1
1
⟩ indicates that the mes-

sage
®ζ1[1] is intended for users inGS1

1
whose partition/sub-

group is managed by S1. The notation ⟨ ®ζ2[1],G
S1
2
⟩ and Step

1(d) can be interpreted similarly.

• Steps 2 and 3: Each server delivers the message shares to

their intended users.

To prevent other users from receiving m, these users shall not

receive both shares ofm. The way that the partitions are formed and

the shares are distributed enforces that only the message recipient

obtains both shares ofm. This will be proved in Section 5.

4.5 Message Verification
When a user receives messages from the servers, the messages are

grouped by the sender’s ID and the message time-stamps. Here we

assume thatm1 andm2 have the same timestamps, and this can

be easily achieved by the sender’s local application. As mentioned

earlier, we only adopt additive secret sharing for the two-server

setting. In this case, after a user receives both sharesm1 andm2 of

a message, the user can reconstructm ←m1 ⊕m2 wherem repre-

sents either the actual message or a randomly generated message.

Let c | |r | |b | |m be the reconstructed message, the user performs the

following verification steps:

• If C(b | |m, r) = c and b = 1, accept the message.

• If C(b | |m, r) = c and b = 0, ignore the message.

• If C(b | |m, r) , c , malicious behavior is detected.

Protocol 3 Dist-Msg

(
®z1, ®z2,G

S1 ,GS2
)

Require: Denote ®z1 ≡ ⟨r1,m1⟩ and ®z2 ≡ ⟨r2,m2⟩. Let ®zi ⟨1⟩ and
®zi ⟨2⟩ be the first and second element of ®zi Denote GS1 ≡

⟨GS1
1
,GS1

2
⟩ and GS2 ≡ ⟨GS2

1
,GS2

2
⟩

1: Sender:

(a) Randomly permute the ordering of the elements of ®z1,

denote the resulting vector as
®ζ1

(b) If
®ζ1[1] =m1:

• ®ζ2 ← ⟨r2,m2⟩

Otherwise:

• ®ζ2 ← ⟨m2, r2⟩

(c) Send ⟨ ®ζ1[1],G
S1
1
⟩ and ⟨ ®ζ2[1],G

S1
2
⟩ to S1

(d) Send ⟨ ®ζ1[2],G
S2
1
⟩ and ⟨ ®ζ2[2],G

S2
2
⟩ to S2

2: Server S1:

(a) Send
®ζ1[1] to users in GS1

1

(b) Send
®ζ2[1] to users in GS1

2

3: Server S2:

(a) Send
®ζ1[2] to users in GS2

1

(b) Send
®ζ2[2] to users in GS2

2

5 PROTOCOL ANALYSES AND EXTENSIONS
In this section, we present the detailed security analysis of our

protocol according to criteria given in Section 3.2. We will also

discuss protocol complexity and how to efficiently handle many-to-

one and one-to-many (sub-group) anonymous communications.

5.1 Security Analysis
First, we reiterate that sender anonymity is achieved via round

synchronization, the same approach as the existing solutions. That

is, the protocol operates in round, and all users participate in each

round which effectively disguise the actual senders and the com-

munication patterns. Additionally, the communication channels

between users and servers are private. As a result, the global adver-

sary who observes the entire network traffic cannot discover the

peer-to-peer communication links among the users and the actual

messages sent from users to servers, and vice versa.

The key functionality required at the servers is passing the mes-

sages around and no additional computations are needed. As a

result, the other security guarantees of the protocol is directly re-

lated to the underlying secret sharing scheme and how the shares

are distributed between the servers. First, we prove that our pro-

tocol achieves pair-wise communication. Then, we show message

confidentiality and connection anonymity are guaranteed through

the formal simulation based method.

Claim 1. Suppose the group partitions are generated using Al-
gorithm 1 and Algorithm 2, and the shares ofm and other random
values are distributed according to Protocol 3. Then only u can receive
two shares ofm, and the other users receive only one share ofm.

Proof. According to Algorithm 1, the users can be classified into

two categories:u and {vi }whereu is the targetedmessage recipient,

and {vi } denotes the set of users who remain in the same partition

across all servers. It is apparent that only u belongs two different

partitions or sub-groups between the two servers. According to

Protocol 3,m1 andm2 are sent to users in two different partitions.

Therefore, it is clear that u receives all shares ofm assuming no

faults occurred in the system. All users in {ui } are in the same

partition across all servers and receive either message pairs denoted

by
®ζ1 or ®ζ2 which contains one valid share ofm. □

The above claim is not valid when a malicious user can have multi-

ple accounts at each server which may allow the user to receive all

shares of the actual messages intended for other users. We address

this issue in Section 5.3. Next we prove that the servers do not

learn anything about the actual message based on the simulation

paradigm presented in [19]. In general, when considering malicious

adversaries, to prove a protocol is secure in literature of Secure Mul-

tiparty Computation (SMC) [19, 40], we need to show whatever an

adversary can learn in the real model (executing the real protocol)

is indistinguishable from what the adversary can learn from the

ideal model (computations are performed by a trusted third party).

Since our protocol does not return any values to the servers, our

proof can adopt a simplified version of the read-ideal paradigm. In

particular, we produce a simulator Sim that generates a simulated

view of an adversary, identical to the real view. More details are

provided below.

Claim 2. Assume one server follows the protocol and the users do
not collude with the servers, Protocol 3 is information theoretically
secure against the servers. In other words, the servers learn nothing
about the actual message.

Proof. The servers receive two types of messages related to

either the session key (Algorithm 1) or message shares (Algorithm

2 and Protocol 3). We build a simulator Sim for simulating both

messages or views. Since our protocol is symmetric, Sim is the same

for either server, and it performs the following with input G (the

set of n) users and p (the domain size):

• Initialize G∗
1
and G∗

2
to be empty set.

• For each ui ∈ G , Sim flips a fair coin: if it is head, ui is added
to G∗

1
. Otherwise, ui is added to G∗

2
.

• Randomly generate r∗
1
and r∗

2
from Zp .

The simulated view of an adversary consists of:

• View
Sim
G ,p ≡

{〈
r∗
1
,G∗

1

〉
,
〈
r∗
2
,G∗

2

〉}
According to the protocol, the real view of an adversary consists of:

• View
π
G ,p ≡

{〈
®ζ1[i],G

Si
1

〉
,
〈
®ζ2[i],G

Si
2

〉}
Partly because r∗

1
, r∗

2
,
®ζ1[i] and ®ζ2[i] are independently and identi-

cally distributed in Zp and partly because G∗
1
, G∗

2
, GSi

1
, and GSi

1
are

also independently and identically distributed, View
Sim
G ,p is identical

to View
π
G ,p . This implies that the adversary or each server does not

learn anything about the actual message during protocol execution.

Thus, Dist-Msg (Protocol 3) is information theoretically secure. □

Claim 3. Using the additive secret sharing scheme and one server
follows the protocol or the two servers do not collude, the proposed
protocol achieves detectability with probability 1 − 1

q .

Proof. In this proof, without loss of generality, we consider S1
is the malicious server. There are two cases that guide our analysis:

• The malicious server S1 wants the recipient u to receive and

accept a specific message m̂ whose two shares are denoted

by m̂1 and m̂2.

• The malicious servers want the recipient u to receive and

accept any m̂ that is different fromm.

In either case, S1 modifies the first share to replace the actual share

m1 ofm it received. As a result, u receives m̂1 andm2 wherem2

is the non-modified share ofm from server S2. For u to accept a

specific m̂ as a legitimate message, it must be the case that m̂2 =m2.

Sincem2 is uniformly random, Prob(m̂2 =m2) =
1

|m2 |
= 1

q3
.

Under the second case, since the only condition for u to accept

a message is to verify the commitment, the chance of a message,

constructed by randomly generated shares, resulting a consistent

commitment is given by
q2

q3
= 1

q . Consequently, combining the two

cases, any modification to the legitimate message can be detected

with probability bounded by 1 − 1

q in the worst case. □

As acknowledged before, when the users are malicious and have

multiple accounts at each server, it is possible for these users to

eavesdrop on other users and frame an honest server. We propose

certain mechanisms to combat malicious users, and the detailed

discussion is give in Section 5.3.

5.2 Message Complexity
The local computation at each server is negligible comparing to

the communication cost. Thus, we only focus on message complex-

ity including the number of messages and rounds. Suppose each

message has a fixed size of s bits. Since the group partition needs

to be performed once for a recipient (but not for each message),

we separate the complexity into two phases: group partition and

sending a message. Assuming each set can be packed into one mes-

sage, then the sender sends two messages per server. Thus, the total

number of messages sent is four or 4s bits. On the server side, local

computation time is approximate to n since managing the grouping

information only needs to store user IDs once. Since each server

receives two messages or 2s bits, the total message complexity for

the entire system is the same as those of the sender. The protocol

requires only one round of communication between a sender and

the two servers.

For sending a message, the sender needs to generate four mes-

sages and two of them are shares of m. The senders sends two

messages to each server. Thus, the total number of messages sent

is four or 4s bits. For the other users (including the targeted re-

cipient), each of them receives two messages which is also the

message complexity for the users. Each server receives two mes-

sages from the sender and sends them to n users. Therefore, the

message complexity for each server is 2 + n or (2 + n)s bits.

5.3 Security Against Malicious Users
Our current design assumes that each user can only have one ac-

count at each server and has the same user ID at both servers. If a

user has multiple accounts at each server, it is possible for the users

to obtain messages intended for other users. Here we provide a

brief description on how to prevent malicious users from receiving

all secret shares ofm. Under the Diffie-Hellman key exchange pro-

tocol, suppose д is a generator of Z+p where p is a prime, and д and

p public parameters. If Bob wants to send a confidential message

to Alice, the two parties first need to agree on a secret key which

encrypts the subsequent messages. Bob generates a random value x
from Z+p , and sends д

x
to Alice under the proposed communication

framework. Bob also needs to embed some special information to

indicate this particular message is for establishing a secret key. Af-

ter receiving the message, Alice generates a random value y from

Z+p , and sends д
y
to Bob. Then both parties derive дxy as the secret

key for encrypting confidential messages between Alice and Bob.

Another change needs to be made is related to the session key

generation or group partitioning for Bob to send themessage related

to дx . To ensure a malicious user who has multiple accounts does

not receive дx , instead of two partitions at each server, Bob creates

κ partitions. The larger the κ, the less likely the malicious user

obtains дx . The probability of disclosing дx to any malicious user

becomes 0 when Bob sets κ = n. In this case, Bob needs to generate

more messages locally. However, this is one time cost, and the

amortized cost is negligible if Bob wants to establish shared keys

with a number of users which can be done all at once. On the other

hand, when Alice replies with дy , she does not need to change the

standard partition protocol on her side.

5.3.1 Preventing Malicious Users from Framing Honest Servers. A
malicious user can frame innocent servers by intentionally gener-

ating messages that do not follow the required format, e.g., append

a bit to indicate the message type. To prevent this from happening,

we can require that when sending a message to the servers, each

user adds a digital signature of the message which can be verified

by the servers. As discussed in Section 3, PKI has several drawbacks

if adopted in our application domain. In what follows, we presents

key ideas on how a user can establish a trusted signing-verifying

key pair of any digital signature scheme without using PKI. The fol-

lowing steps are performed between a user (e.g., Bob) and the two

servers S1 and S2 each of whom has a publicly know public-private

key pair

〈
pusi ,prsi

〉
:

• Bob generates a public-private key pair ⟨pub ,prb ⟩ for a given
digital signature scheme agreed by participating parties.

Send pub to both S1 and S2.
• Suppose Si receives k

i
b from Bob. If all three parties follow

the protocol, k1b = k
2

b = pub .
• S1 and S2 exchange the keys received from Bob:

– S1 sends k
1

b | |Signpus1

(
k1b

)
to S2, where Signpus

1

(
k1b

)
is

S1’s signature of k
1

b .

– S2 sends k
2

b | |Signpus2

(
k2b

)
to S1, where Signpus

2

(
k2b

)
is

S2’s signature of k
2

b .

• If k1b , k2b and the signatures cannot be verified by both

servers, reject the key and abort.

If the above steps executed successfully, the key pub is established

between Bob and the two servers. Afterwards, the servers are re-

quired to verify the subsequent messages they receive from Bob

before forwarding them to the other users. If the messages cannot

be verified, they will be rejected. When forwarding the messages

to other users, each server also needs to append its signature to

the messages. The users verify the signatures before accepting the

messages from the servers. If the messages cannot be verified, the

protocol aborts. Next we analyze why the above steps can prevent

a malicious user from framing an honest server.

Without loss of generality, assume S1 is honest, and Bob sends

Alice a message m. Let m1 and m2 denote the shares of m. If m
cannot be verified by Alice and S1 gets blamed for it, the following

steps have occurred:

• S1 received m1 | |Signpub (m1) from Bob, and the signature

was verified.

• S1 sentm
′
1
| |Signpus

1

(m1) to Alice who verified the signature

and acceptedm1

The verification, that proves S1 innocence, proceeds as follows:

• Alice broadcastsm′
1
| |Signpus

1

(m1).

• S1 broadcasts k
2

b | |Signpus2

(
k2b

)
, pub , andm1 | |Signpub (m1).

• Honest users or servers can check that k2b = pub ,m1 =m
′
1

and the signatures can be verified. Then this proves that S1
followed the protocol when sending the shares ofm to Alice.

5.4 One-to-Many Communication
The existing solutions do not support efficient one-to-many anony-

mous communication in the sense that the message has to be sent

(received) to (from) one person within each round. Additionally,

message collisions cannot be avoided in MCMix. In other words,

if two or more users want to send messages to the same recipient,

some of these users will not be able to send any messages to their

intended recipients. This starvation behavior can persist through

each round of protocol execution. Clearly, assuming each user only

communicates with a different user (to avoid message collision)

during each round is not realistic and impractical, and we do not

know if this is fixable based on the current design of MCMix.

Our solution does not have the message collision problem and

can be easily modified to achieve efficient subgroup communica-

tion. Under one-to-many communication model, we consider two

different situations:

• Subgroup communication: a user wants to send the same

message to a subgroup of users.

• General one-to-many communication: a user wants to send

different messages to a subgroup of users.

5.4.1 Subgroup Communication. The goal of our previously pro-

posed partition algorithm is to generate random partitions given a

single message recipient. However, it is not clear if the algorithm

can produce the required randomness given a subgroup of users

whose size is a fraction of n. Here we propose a different partition
algorithm that works for a single user or a sub-group Gτ of users

whose size is bounded by
n
2
(i.e., |Gτ | ≤ ⌊

n
2
⌋). The key ideas for

the new partition algorithm work as follows assuming n is divisible

by 2 for illustration purpose:

• First, we permute the group of users and evenly divide them

into two disjoint subgroups. During the permutation and

group division, Gτ remains in the same subgroup.

• Then, we swap Gτ with a subset of users with the same size

in another subgroup to produce the needed partitions for

different servers.

Algorithm 4 Group-Partition*(G,Gτ) → GS1 ,GS2

Require: G is a group of n, Gτ ∈ G (message recipients) and

|Gτ | ≤ ⌊
n
2
⌋

1: Permute G and divide it into two equal size subgroups G1 and

G2 while treatingGτ as an atomic element, i.e., |G1 | = |G2 | and

either Gτ ⊆ G1 or Gτ ⊆ G2

2: GS1
1
← G1 and G

S1
2
← G2

3: GS1 ←
〈
GS1
1
,GS1

2

〉
4: if Gτ ⊆ G1 then
5: Gτ̂ ←R G2 and |Gτ̂ | = |Gτ |

6: G ′
1
← (G1 −Gτ) ∪Gτ̂

7: G ′
2
← (G2 −Gτ̂) ∪Gτ

8: else
9: Gτ̂ ←R G1 and |Gτ̂ | = |Gτ |

10: G ′
1
← (G1 −Gτ̂) ∪Gτ

11: G ′
2
← (G2 −Gτ) ∪Gτ̂

12: end if
13: GS2

1
← G ′

1
and GS2

2
← G ′

2

14: GS2 ←
〈
GS2
1
,GS2

2

〉
The key steps of the modified group partition algorithm are given

in Algorithm 4.

• Step 1:G is randomly permuted while keepingGτ as a single

element inG , and then divideG into two equal partitionsG1

and G2 such that Gτ belongs to one of the sub-partitions.

• Steps 2-3: AssignG1 andG2 as the group partitions for server

S1, denoted by GS1
1

and GS1
2

respectively.

• Steps 4-7: IfGτ belongs toG1, then randomly select a subset

Gτ̂ from G2, and swap Gτ and Gτ̂ to create G ′
1
and G ′

2
.

• Steps 9-11: IfGτ belongs toG2, then randomly select a subset

Gτ̂ from G1, and swap Gτ and Gτ̂ to create G ′
1
and G ′

2
.

• Steps 13 and 14: Create partitions GS2
for S2.

To enable subgroup communication, we also need to make a small

modification to message generation. Based on the partition algo-

rithm, we can observe that the partitions will not be the same across

the servers due to the swap operation. However, we can still make it

work by the strategies discussed below. In Algorithm 2, the senders

generate two pairs of messages: ⟨r1,m1⟩ and ⟨r2,m2⟩, such that

• m1 ⊕m2 = C(1| |m, r)| |r | |1| |m
• ri ⊕mi =m

′
i = C(0| |r

′
i , r
′′
i)| |r

′′
i | |0| |r

′
i , for i ∈ {1, 2}

The targeted user or message recipient u obtains bothm1 andm2.

The users in the same partition receives either ⟨r1,m1⟩ or ⟨r2,m2⟩

Due to the modified partition (Algorithm 4), the users inGτ̂ receives

r1 and r2. Since r1 ⊕ r2 produces random value, the users in Gτ̂
cannot distinguish a real message from a message modified by one

of the malicious servers. In other words, these users lose the capa-

bility of verifying message integrity. Thus, we need to modify the

message generation algorithm by adding one more pair of messages

denoted by ⟨r3,m3⟩, such that r1 ⊕ r2 ⊕ r3 = C(0| |r
′
3
, r ′′
3
)| |r ′′

3
| |0| |r ′

3
:

• r3 = r1 ⊕ r2 ⊕ C(0| |r
′
3
, r ′′
3
)| |r ′′

3
| |0| |r ′

3

m3 is a randomly generated dummy value. Then Protocol 3 can be

easily modified to ensure users in Gτ̂ to receive r1, r2 and r3. The
message reconstruction method discussed in Section 4.5 needs to

be slightly changed. Instead of receiving two shares in the original

protocol, now each user receives three shares, e.g., s1, s2 and s3.
Thus, the users try four combinations, denoted by si ⊕ sj (i , j)
and s1 ⊕ s2 ⊕ s3. If none of the combinations return a valid message,

the users detect cheating by the servers.

5.4.2 General One-to-Many Communication. To support general
one-to-many communication is straightforward in our design. Sup-

pose there are n total users and Alice wants to send different mes-

sages to κ (1 ≤ κ ≤ n) users denoted by η = {η1, . . . ,ηκ } users.
Alice performs the following:

• Randomly partition the n users into κ disjoint subgroups

Gη1 , . . . ,Gηκ
and each subgroup contains around

n
κ users

and ηi ∈ G
ηi

for 1 ≤ i ≤ κ.
• In parallel and for each Gηi

, applies the steps given in Algo-

rithms 1 and 2 Protocol 3.

Following these steps, the servers can learn the number of users (e.g.,

κ) Alice is communicating in each round. In order to hide κ, Alice
can pad Gηi

with additional users out of the n users. These noise
users will only receive authenticated random messages. For each

round, we can randomize the number of noise users. In addition, to

further randomize the process, Alice could distribute these κ users

into multiple rounds.

5.4.3 Amortized Complexity. According to our modified protocol

for one-to-many communication, in each round, a user can send

and receive from many other users. The complexity of the existing

solutions is described per message sent. In this case, the communi-

cation complexity for our protocol becomes (kn2/κ) where k is the

number of servers and k = 2 for our protocol. If κ is a fraction of

n, then the complexity becomes O(kn) which is the same as most

mix-net based solutions. Whereas, the communication complexity

of MCMix is O(kln logn) for sending one message per party assum-

ing that each user sends message to a different recipient to avoid

message collisions. The round complexity is one round for our pro-

tocol, and κ and O(κ logn) rounds for mix-net based solutions and

MCMix respectively where κ is the subgroup size.

6 PERFORMANCE EVALUATION
The efficiency and scalability of our proposed protocol is evaluated

in throughput and bandwidth with respect to the number of users in

the anonymity set. We also compare our performance with MCMix

[2] that offers information theoretic security.

6.1 Hardware Specifications
We have implemented the complete end-to-end logic for our proto-

col in C++ with no GUI elements. This was done in C++ gcc version

9.1.1, with GMP for secure random number generation along with

bit operations and Boost Asio 1.69.0 for network communication. To

evaluate the computational and bandwidth burden of our approach,

we utilized Chameleon Cloud [23] to handle deploying instances of

our image, Ubuntu 18.04.3 LTS. We ran instances each with 128GB

RAM, 48 Intel Xeon E5-2670 v3 2.3GHz processors, and 10 Gbps net-

work bandwidth. Two of these instances ran as a server to receive

and distribute messages. The other 5 instances simulated clients in

each experiment. These simulated clients shared a TCP connection

to avoid overloading the servers, but no batching of request or mes-

sage distribution was done in order to more realistically simulate

the cost of many communicating clients.

6.2 Experiment Set-up and Outcomes
In each experiment, active clients generate a grouping and sends

a message to themselves which allows us to easily estimate one

round of sending and receiving time. The evaluation adopts the

following parameters:

• Message size: fixed to 256 bytes to simulate common Twitter

message size.

• The p and q values in Algorithm 2 are 2048-bit and 6144-bit

respectively to accommodate the 256-byte message size.

• Latency: each client records message generation time, round-

trip message travel time, and message reconstruction time.

• Bandwidth: network traffics incurred by a 256-byte message.

• Group size: the number of users in a sub-group.

Each client simulator is scheduled as a cron task to start at precisely

the same time. First simulators generate and send a grouping for

every active user. When all groupings have been successfully sent,

the simulators generate and send an encrypted message for each

user. Throughout this process, the total run time is recorded for

each simulator and divided by its total simulated users to estimate

the average message latency for each user.

Figure 2: Message Latency for users within a group

Figure 3: Message Latency for a million users active users
divided into groups of given size

In the first experiment, we want to see how the group sizes

affect the overall performance. Given a specific group size, the

experiment simulates one round of communication where each

user sends a message to one other user or a subgroup of users. The

average running time for delivering a message is shown in Figure

2. The solid line indicates the time for sending one message per

user, and the dashed line shows the average amortized cost for

each user to send messages to a subgroup of κ users. We set κ to

be 25% of each group size which is well within the ⌊ n
2
⌋ threshold.

When κ increases, the amortized cost decreases. These results show

that when the group size increases, the running time increases

quadratically. However, the amortized cost remains linear and is

only affected by the subgroup size. Although the dashed line seems

flat, the actual cost increases slightly as the group size grows.

In the second experiment, we show a situation where a million

total users are divided into multiple groups of sizes varying from

500 to 10000. For example, for the group size of 500, the one million

users are distributed to 2000 groups, and the users only communi-

cate within their own groups. Since the total number of users is

fixed, the larger the group size, the smaller number of groups will

be produced. As shown in Figure 3, the latency increases with the

size of the anonymity set. The high communication latency is in

part caused by our simulation where we could only use several com-

puters to simulate interactions among a million users. In addition,

all simulations were performed by a single thread. In a real environ-

ment, the two storage servers would have very high parallelization

capability (with hundreds or thousands of computers running in

parallel), and users can interact with the servers simultaneously.

The latency should be much less in the real world. Furthermore,

as shown in Figures 2-4, the amortized latency is very small. Thus,

our solution is efficient for high traffic applications.

6.3 Comparing to MCMix
As mentioned early, mix-net based protocols are generally more

efficient but less secure comparing to SMC-based solutions. MCMix

is the only other SMC-based approach, and it has several key differ-

ences comparing to our proposed solution as discussed in Section

2.2. We implemented MCMix using the source provided at [1] and

calculated average messaging time shown in Figure 4. Note that

the figure only includes message latency and not the setup phase

for users. Clearly, above 10000 active users, MCMix starts to run

faster than our protocol. However, our amortized cost (by setting

κ to be 25% of the total users within a group) is lower, especially

for large n. This experiment does not include the cost of MCMix’s

dialing phase which has significant cost. While dialing is not imple-

mented at the given source, the complexity is at least as expensive

as the messaging protocol itself. Figure 5 demonstrates the cost of

establishing communication (or the dialing phase) in MCMix and

our protocol. Clearly, our dialing protocol (i.e., group partitioning)

is significantly more efficient.

As acknowledged in our theoretical analysis, the main limitation

of our approach is its high bandwidth for very large anonymity set

as shown in Figure 6. The bandwidth is generated by each message

sent within a group of users with a specific size. As expected, the

bandwidth increases as does the group size.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a simple solution to achieve anonymous

communication secure against malicious adversaries. Comparing

Figure 4: Message Latency in a round of MCMix, excluding
setup phase

Figure 5: The average time for a user to establish informa-
tion needed to message in both approaches.

Figure 6: Server Bandwidth per message sent by a user
within a group of given size

to the existing solutions, our approaches are very easy to imple-

ment (e.g., requiring two independent servers with storage and

communication capabilities) and offer additional security guaran-

tees, such as, efficient detectability of message modification. To

show the feasibility of our approach, we implemented our solution

using Chameleon Cloud. The result shows the solution is salable for

smaller group sizes. For subgroup communications, our protocol is

efficient even for a large group.

The message complexity of our protocol for sending one message

per user is still high. As a future work, we will reduce the message

complexity by exploring random sampling techniques that may

allow selection of a subset users to produce the needed partitions

without decreasing the degree of connection anonymity. Another

direction is to add additional servers to achieve fault-tolerance.

That is, when one or more server fails, the rest of the servers can

still provide anonymous communication services. Although the

communication complexity will also increase, the trade-off between

efficiency and security may be necessary for certain situations.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Dan Bogdanov and Cybernetica

for providing the sharemind software and Chameleon Cloud for

providing the computing resource. The authors would also like

to thank Dr. Yuhong Nan and the anonymous referees for their

valuable comments and constructive suggestions. This work is

supported by the National Science Foundation under Grant No.:

DGE-1946619.

REFERENCES
[1] [n.d.]. MCMix benchmarking code. https://github.com/druid/mcmix-benchmark.

[2] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.

2017. MCMix: Anonymous messaging via secure multiparty computation. In The
USENIX Security Symposium. 1217–1234.

[3] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication over

Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA, 551–569. https://www.

usenix.org/conference/osdi16/technical-sessions/presentation/angel

[4] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Es-

fandiar Mohammadi. 2013. AnoA: A Framework for Analyzing Anonymous

Communication Protocols. In 2013 IEEE 26th Computer Security Foundations
Symposium. 163–178. https://doi.org/10.1109/CSF.2013.18

[5] Avrim Blum, Cynthia Dwork, Frank Mcsherry, and Kobbi Nissim. 2005. Prac-

tical privacy: The SuLQ framework. In Proceedings of the 24th ACM SIGMOD
International Conference on Management of Data / Principles of Database Systems.
128–138.

[6] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. Cloudtrans-

port: Using cloud storage for censorship-resistant networking. In International
Symposium on Privacy Enhancing Technologies Symposium. Springer, 1–20.

[7] David Chaum. 1988. The dining cryptographers problem: Unconditional sender

and recipient untraceability. Journal of Cryptology 1, 1 (01 Jan 1988), 65–75.

https://doi.org/10.1007/BF00206326

[8] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri

de Ruiter, and Alan T. Sherman. 2016. cMix: Mixing with Minimal Real-Time

Asymmetric Cryptographic Operations. Cryptology ePrint Archive, Report

2016/008. https://eprint.iacr.org/2016/008.

[9] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–90. https://doi.org/10.1145/

358549.358563

[10] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig.

2015. HORNET: High-speed onion routing at the network layer. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1441–1454.

[11] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,

Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. 2020. Talek: Private

Group Messaging with Hidden Access Patterns. In Annual Computer Security
Applications Conference (ACSAC ’20). Association for Computing Machinery, New

York, NY, USA, 84–99. https://doi.org/10.1145/3427228.3427231

[12] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. J. ACM 45, 6 (Nov. 1998), 965–981. https://doi.org/10.

1145/293347.293350

[13] David Cole. [n.d.]. We Kill People Based on Metadata. https://www.nybooks.

com/daily/2014/05/10/we-kill-people-based-metadata/

[14] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An

anonymous messaging system handling millions of users. arXiv preprint
arXiv:1503.06115 (2015).

[15] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proactively

Accountable Anonymous Messaging in Verdict. In The 22nd USENIX Security
Symposium. Washington, D.C., 147–162. https://www.usenix.org/conference/

usenixsecurity13/technical-sessions/presentation/corrigan-gibbs

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[17] Cynthia Dwork. 2009. Theory of Cryptography. Springer Berlin / Heidelberg,

Chapter The Differential Privacy Frontier.

[18] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh.

2021. Express: Lowering the Cost of Metadata-hiding Communication with

Cryptographic Privacy. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 1775–1792. https://www.usenix.org/conference/

usenixsecurity21/presentation/eskandarian

[19] Oded Goldreich. 2004. The Foundations of Cryptography. Vol. 2. Cambridge

University Press, Chapter General Cryptographic Protocols.

[20] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.

2013. Practically Efficient Multi-party Sorting Protocols from Comparison Sort

Algorithms. In Information Security and Cryptology – ICISC 2012, Taekyoung
Kwon, Mun-Kyu Lee, and Daesung Kwon (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 202–216.

[21] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.

2013. Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries.

In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS ’13). ACM, New York, NY, USA, 337–348. https:

//doi.org/10.1145/2508859.2516651

[22] Sachin Katti Jeff Cohen Dina Katabi. 2007. Information slicing: Anonymity using

unreliable overlays. (2007).

[23] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul

Rad, and Paul Ruth. 2019. Chameleon: a Scalable Production Testbed for Computer

Science Research. In Contemporary High Performance Computing: From Petascale
toward Exascale (1 ed.), Jeffrey Vetter (Ed.). Chapman & Hall/CRC Computational

Science, Vol. 3. CRC Press, Boca Raton, FL, Chapter 5, 123–148.

[24] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). Association for Computing Machinery, New York, NY, USA, 830–842.

https://doi.org/10.1145/2976749.2978357

[25] Panayiotis Kotzanikolaou, George Chatzisofroniou, and Mike Burmester. 2017.

Broadcast anonymous routing (BAR): scalable real-time anonymous communi-

cation. International Journal of Information Security 16, 3 (June 2017), 313–326.

https://doi.org/10.1007/s10207-016-0318-0

[26] E. Kushilevitz and R. Ostrovsky. 1997. Replication is Not Needed: Single Database,

Computationally-private Information Retrieval. In Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science (FOCS ’97). IEEE Computer

Society, Washington, DC, USA, 364–. http://dl.acm.org/citation.cfm?id=795663.

796363

[27] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle. Pro-
ceedings on Privacy Enhancing Technologies 2016, 2 (2016), 115–134.

[28] Albert Kwon, David Lu, and Srinivas Devadas. 2019. XRD: Scalable Messaging

System with Cryptographic Privacy. CoRR abs/1901.04368 (2019).

[29] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed pri-

vate messaging immune to passive traffic analysis. In The 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). 711–725.

[30] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping Secure

Communication without Leaking Metadata.. In OSDI. 571–586.
[31] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and Its Application to Anonymous Communication. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19). Association for Computing Machinery, New York, NY, USA,

887–903. https://doi.org/10.1145/3319535.3354238

[32] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2021. Spectrum:

High-Bandwidth Anonymous Broadcast with Malicious Security. Cryptology

ePrint Archive, Report 2021/325. https://ia.cr/2021/325.

[33] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. 2017. The loopix anonymity system. In The 26th USENIX Security
Symposium. 16–18.

[34] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and

Unlinkable Bitcoin Transactions. In NDSS.
[35] Bruce Schneier. [n.d.]. NSA Doesn’t Need to Spy on Your Calls

to Learn Your Secrets. ([n. d.]). https://www.wired.com/2015/03/

data-and-goliath-nsa-metadata-spying-your-secrets/

[36] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.

2017. Stadium: A distributed metadata-private messaging system. In Proceedings
of the 26th Symposium on Operating Systems Principles. ACM, 423–440.

[37] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian

Goldberg, and Matthew Smith. 2015. SoK: secure messaging. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 232–249.

[38] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 137–152.

[39] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.

2012. Dissent in numbers: Making strong anonymity scale. In The 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12). 179–182.

[40] Andrew C. Yao. 1986. How to generate and exchange secrets. In Proceedings of
the 27th IEEE Symposium on Foundations of Computer Science. IEEE, 162–167.

https://github.com/druid/mcmix-benchmark
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://doi.org/10.1109/CSF.2013.18
https://doi.org/10.1007/BF00206326
https://eprint.iacr.org/2016/008
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/3427228.3427231
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/s10207-016-0318-0
http://dl.acm.org/citation.cfm?id=795663.796363
http://dl.acm.org/citation.cfm?id=795663.796363
https://doi.org/10.1145/3319535.3354238
https://ia.cr/2021/325
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/

	Abstract
	1 Introduction
	1.1 Our Main Contribution

	2 Related Work
	2.1 Mix-Net and Differential Privacy
	2.2 SMC and PIR
	2.3 DC-Net and other Approaches

	3 Design Overview
	3.1 An Alternative Design based on Broadcasting and PKI
	3.2 Threat Model and Assumptions

	4 The Proposed Protocol
	4.1 Secret Sharing Scheme
	4.2 Illustration of the Main Idea
	4.3 Group Partition
	4.4 Generating Authenticated Messages
	4.5 Message Verification

	5 Protocol Analyses and Extensions
	5.1 Security Analysis
	5.2 Message Complexity
	5.3 Security Against Malicious Users
	5.4 One-to-Many Communication

	6 Performance Evaluation
	6.1 Hardware Specifications
	6.2 Experiment Set-up and Outcomes
	6.3 Comparing to MCMix

	7 Conclusion and Future Work
	Acknowledgments
	References

