Privacy-Preserving Location Publishing under
Road-Network Constraints

Dan Lin, Sashi Gurung, Wei Jiang, and Ali Hurson

Missouri University of Science and Technology
{l'i ndan, sgy99, wj i ang, hur son}@st . edu

Abstract. We are experiencing the expanding use of location-basedcsser
such as AT&T TeleNav GPS Navigator and Intel’'s Thing Findsisting location-
based services have collected a large amount of locati@ d&ich have great
potential for statistical usage in applications like taffiow analysis, infras-
tructure planning and advertisement dissemination. Tlgeckallenge is how to
wisely use the data without violating each user’s locatiovggy concerns. In this
paper, we first identify a new privacy problem, namiiference routgroblem,
and then present our anonymization algorithms for priva@serving trajectory
publishing. The experimental results have shown that oprageh outperforms
the latest related work in terms of both efficiency and effectess.

1 Introduction

The extensive use of location-based services, such as AT8aNBv GPS Navigator,
Sprint’s Family Locator, and Intel's Thing Finder, have leoted a large amount of
location data. If information like vehicle IDs and movingelitions on roads can be
published, people in many fields will benefit from it. With pest to the public sector,
traffic flow information can be extracted from published ID®lanoving directions.
Such information will play an important role in infrastrucé construction and traffic
light control. With respect to the business domain, trafffoimation can help decide
the location of company branches, and also advertisemantse& customized and dis-
seminated at the most advantageous locations. With respectr daily lives, traffic
information is certainly useful for detecting and predigttraffic jam, and calculating
better routes in an emergency (e.g., for ambulances). Henwigevthe meantime, loca-
tion privacy concerns [11, 16] may hinder the developmersuzh attractive usage of
traffic information. It is well known that using a pseudonysmiot sufficient to prevent
the linkage of a published location to a real ID [5]. The kegltdnge is how to wisely
use the location data without violating each user’s prive@ycerns. This problem is
termed agprivacy preserving historical location data publishing

Historical location data forms a sequence of locations inblogical order, termed
astrajectory. In general, one’s trajectory consists of roads he hasedsFor instance,
in Figure 1, use’s trajectory can be represented/a$BC and useny,’s trajectory
is ABD. Such road-network based trajectories are valuable irrafentioned applica-
tions. In privacy-preserving location publishing, the edo prevent adversaries from
mapping published locations to a specific individual.
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Fig. 1. An Example of Inference Route

One may think that a trajectory resembles a conventionalesgpl pattern. Hence,
a naturally raised question is that if we can directly empgboyacy preserving data
publishing approaches [3, 4, 13, 20] developed in non-spttimporal databases? The
answer is negative, and the main reason is that a trajecistigglishes itself from the
conventional sequential patterns due to additional camg# (e.g., road-network infor-
mation) which do not exist in the traditional sequences. &/&pecifically, elements in
traditional sequences are usually independent of one anathile the relationship of
elements in the trajectory sequence is fixed under a paticabd-network informa-
tion. Therefore, we cannot use traditional algorithms faitearily remove or replace
elements in the sequences because such operations wik creealistic trajectories
consisting of non-connected road segments.

There have been several recent efforts [2,7,12,17] on anizinyg trajectories.
Some work [17] considers trajectories as a sequence of laridie.g., stores and mu-
seums, which ignore the paths connecting these placestsJthé, 12] consider tra-
jectories as a sequence of coordinates in Euclidean spadgniowe the road-network
constraints. Very few works considered the road-networistraint. The most recent
one is by Pensa et al. [14], who anonymize road-networkéetsagectories based on
k-anonymity [15]. However, their approach may not preseragettory information as
much as possible. This can be demonstrated by the examie lg@low.

In [14], trajectories are stored and anonymized by usingéptree which may not
be an appropriate structure to model the road-network.riSvance, consider four users
who leave their homed(J, K, D) and head for work. Wheh is 3 and the input to
their algorithm is the following four trajectories; (/ ABC), uz(JABC), us(K ABC)
andu4(ABD)?, their anonymization result will be an empty set since thefiprtree
treats trajectories with different starting points indegently. Such result obviously
lost too much useful information. To achieve better infotiorautility, an alternative
way is to directly take partial trajectories as input, iaansider only busy roads with
more thark users. In this case, the input becomegABC), uz(ABC), us(ABC) and
ug(AB), and the new anonymization result i&}(ABC), u4(ABC), u4(ABC) and
u}y(AB), which is more meaningful than the previous empty set.

In addition, since road maps can be found everywhere, in ¢timeath of privacy-
preserving location publishing, it is reasonable to assumagl-network information

Y1, ua, us andus can be thought as either a trajectory ID or a person’s symili



is available to any adversary. Thus, cautions are very meeded when publishing
anonymized trajectories. For instance, let us continue filwe previous example and
assume that the road-network in Figure 1 is accessible taeersary Bob. When/,
uh,us andu)y are published, using the road-network, Bob can inferdfyatas also trav-
elled on the road segmeRtD. Also, if Bob knows that Alice usually travels aBD,
then he can link:} to Alice and consequently track Alice remaining trajeasrin the
published dataset. Thisference route problens caused by the fact that an adversary
can infer someone’s unpublished infrequent trajectoniemfthe published location
dataset. Because the inferred trajectories are infrequétht high probability, these
trajectories, combined with certain external knowled@e be used to identify a par-
ticular individual’s trajectory information in the pubtied dataset. In general, given a
thresholdk, if the attacker can link any anonymous ID to Alice with prbbity greater
than% by using the above method, then we say there is an inferente pooblem.

In this paper, we address the problem of privacy-presenacation data publish-
ing under the assumption that road-network data are puiflicrhation. Our approach
has three main properties: (1) it guaranteesonymity of published data, (2) it avoids
the inference route problem, and (3) the anonymizatioritefllow the road-network
constraints. The basic idea is to employ a clustering-basedymization algorithm to
group similar trajectories and minimize the data distorti@used by anonymization
through a careful selection of representative trajectolée propose a C-Tree (Cluster-
Tree) to speed up the clustering process and develop methodsementally calculat-
ing error rates. The rest of the paper is organized as foll®sstion 2 reviews related
work, Section 3 presents our proposed approach, Sectiqgrodtseexperimental results,
and Section 5 concludes the paper with lessons learned ané fesearch directions.

2 Related Work

Privacy-preserving location publishing is a relativelyyg area in which little research
has been carried out. In [7,12], the spatial-temporal dlgpkechnique is applied to
generate cloaking regions covering segments of trajexsoim [2], Abul et al. consider
a trajectory as a cylindrical volume where the radius reprtsthe location impreci-
sion. Then they perturb and cluster trajectories with amying volumes to ensure that
each released trajectory volume encloses at leastl other trajectories. Unlike the
previous work which is based on the similarity of trajeatstiYarovoy et al. [19] group
trajectories based on so-called quasi-identifiers whittaisl to be selected in practice.
None of the approaches considers the impacts of road newemiitraints and hence,
their anonymization results are vulnerable to attack whemtalicious party knows the
road map or holds some other background knowledge. E.gcldfaking region covers
only one road, the corresponding trajectory can be easipypméto the road.

In [17], Terrovitis and Mamoulis assume that the adversdamw partial trajectory
information of some individuals. They use it as part of infoutheir anonymization al-
gorithm. Such usage limits the generality and feasibilittheir approach. In [1], Abul
et al. used a coarsening strategy which removes one or matialggoints in a trajectory
to achieve anonymization. An anonymized trajectory maytaiordisconnected paths.
This is different from our approach which preserves comtirsutrajectories based on
road-network information. Two other related works useceteonfusion and path con-



fusion respectively. The time confusion approach [9] mixeation samples of differ-
ent trajectories, and the path confusion approach [8] esopsiths in areas where at
least two users meet. The main problem of the two approaslhteai traffic flows are
no longer preserved.

The most related work is by Pensa et al. [14]. They proposefixgree based
anonymization algorithm which guaranteesinonymity of the published trajectories
in a way that no trajectories with support less thawill be published. They defined
the support of a trajectory’rj as the number of trajectories containifig;, which
however causes the inference route problem. Here, we cahaegow the concept of
k-anonymity is applied will affect the quality of the anonyzation result.

3 Problem Statement

In general, raw data collected by location-based apptinatcontains user (object) in-
formation as a four-tuplél D, loc, vel, t), wherelI D is the object ID/oc andvel are
object location and velocity at timestampespectively. The anonymized dataset con-
tains object information in the form dfaid, rid, dir), whereaid is an anonymized
object ID,rid is a road ID andlir is the object’'s moving direction. Here, for privacy
concerns, we replace specific locations and velocities &g D and moving direction.
Such representation is sufficient to derive trajectorigsadfic flow information.

The road network is modeled as a directed graph, where egghadresponds to
a road and each node represents an intersection. Spegjfarakkdge is represented as
min;, wheren; andn; denote nodes. We then proceed to define the frequent road and
inference route problem.

Definition 1 Let W be a time interval, and let be a threshold. We say a road is a
frequent road if the number of moving objects moving alongdirection on this road

is no less thark within timeTV. We call the number of moving objects the frequency of
the road.

Definition 2 LetY be an intersection of roads, ...,7.,,, and IetU;“, U; be the sets of
objects moving toward and outwaition roadr; (1 < i < m) during W, respectively.
f3U;", U7, US| > kUS| >k and (0< |U;" = US| < kor0< [U; — U | < k),
then we say” has aninference routeproblem.

To have a better understanding of the above definition, le¢uisit the example in
Figure 1. NodeB is an intersection of three roads. On ro&8, UXB = {uqg,u9,us, ug};
on roadBC, Ug={uius,us}. SinceUsy — Upe = {ua}, (Ui — Ugol = 1< k,
nodeB has an inference route problem.

Next, we present how to evaluate the quality of the anonythifaaset or trajec-
tories. Intuitively, the less difference between the amoizgd dataset and the original
dataset, the better quality the anonymized dataset is.eldre;, we use two common
metrics: average error rate and standard deviation. Sefthege aréV roads (or edges
in a road-network graph) and represents road Let original,, andanonymized,,
denoter;’s original frequency and frequency after the trajectoniage been anonymized.
Then in Equation 1, the error functidil is defined as the average difference between
original,, andanonymized,, (i.e., E;), ando is the standard deviation of the error



rates. A low standard deviation indicates that the anongtiua quality of each road is
similar and close to the average error rate.

B 1 i B 1 i |original,., — anonymized,.,| )
N p ‘N pt original,,
| X
o=\|% Z(E — E)2 2)

4 Our Approach

In this section, we present our anonymization algorithroohsists of two main steps.
First, from the raw datasd®, we remove records associated with infrequent roads, i.e.,
roads with less tha® objects within a given time interval. We denote the obtained
dataset a®’. In D’, we construct partial trajectories for the remaining otgéased on
moving directions. Note that one user may have several disstied partial trajectories
because he may visit some infrequent roads. Each parijiettoay will be assigned an
anonymous ID. For the rest of the paper, the word “trajeétangd “partial trajectory”
are interchangeable.

The second step is the core of the anonymization processrégese a clustering-
based anonymization algorithm which guarantees that bigeicly strictk-anonymity
(defined in Section 4.1) among partial trajectories, oumgnazation result is free of
the inference route problem. Compared to traditidrahonymization approaches, our
approach not only needs to minimize errors caused by anaajion but also needs to
satisfy some unique requirements. Road-network conséraimould be enforced during
the entire anonymization process, especially when comgtitie representative trajec-
tories. The first step is relatively straightforward. THere, the following discussion
focuses on the anonymization step.

4.1 Clustering-based Anonymization

The essential idea of clustering-based anonymizatiornrithgo is to find clusters of
similar trajectories and anonymize them by using a reptasiga trajectory. The details
are the following.

First, we need to select a proper way to represent trajestofrajectories are ini-
tially represented as a sequence of timestamped locatioosr anonymized dataset,
we do not disclose exact locations because detailed intimmancreases attackers’
chances to link published location to specific individuldstead, we report only infor-
mation about which object passing by which road. There aoedtions: (i) represent-
ing a trajectory by road IDs; or (ii) representing a trajegtoy node IDs. As illustrated
in Figure 2, trajectoriedrj;, Trj, andTrjs can be represented agrs, 7173, and
r115 respectively following the first option. Using the secondiap, trajectories rj1,
Trjo andT'rjs can be represented agnans, ninsng, andninong respectively. Both
types of representations well capture the similarity betweajectorie§d’rj, andT'rjs
which share one common road. However, the first option tfEBajs and7'rj, as two
irrelevant trajectories even though they intersect. Teebeeflect relationships among



Fig. 2. Trajectory Representation

trajectories, we adopt the second option and represenjextiay by a sequence of
node IDs.

The second issue is to define the distance between trajestdve employ thedit
distanceg18]. The edit distance between two trajectories is givethigyminimum num-
ber of operations needed to transform one trajectory irdmther, where an operation
is an insertion, deletion, or substitution of a node. Fomepde, the edit distance be-
tweenT'rji(nsnang) andTrja(ninany) is 4, while the distance betwedhrj, and
Trjg(n1n2n6) is 2.

Now we are ready to present our clustering-based anonyimrizatgorithm. An
outline is given in Figure 3. First, we group same trajee®rmnd count itsupport
Supportis defined as the number of users who have the sametarégs (Definition 3).

Definition 3 Let v be a user's anonymous ID arflrj, denote his trajectory iD’.
We have the support of trajectofyr;j as follows: Support(Trj) 3{u|Trj, = Trj, for

every 4.

Distinct trajectories are arranged in a descending ord¢heaif supports. If a trajec-
tory’s support is more than the anonymization threshtiglthe trajectory itself forms a
cluster. For the remaining trajectories, sByj, we compare it with existing clusters.
If there exists a suitable cluster, we insert the new trajgdnto that cluster and up-
date the cluster’s information. Otherwise, a new clustdirlvei created fofl'r;. After
all trajectories have been checked, we translate repegsantrajectories together with
their supports into output format, which contains objearamious IDs, road IDs, and
objects’ moving directions. For example, we obtain thedimlhg intermediate result
after anonymizing the trajectories shown in Figure/l(ABC), u4(ABC), u5(ABC)
andu/,(ABC), wherek = 3. The published dataset will look like thigz;, Ry, AB),
(u}, Ra, BC), (ub, R1, AB), (ub, Re, BC), ..., (v}, Re, BC). The detailed algorithms
for finding candidate clusters, calculation of error rated selection of representative
trajectories will be elaborated in the rest of the section.

Our approach ensures stricanonymity (Definition 4) over all trajectories in dataset
D’.Itis called “strict” because the calculation of trajegtsupports is based on an ex-
act match of entire trajectories. In this way, we guararttaéthe anonymization result
will not contain any inference route. Our proof can be foum§ilLio].

Definition 4 (Strict k-anonymity over trajectories): Lef'rj be a trajectory. We say
T'rj satisfies strick-anonymity if Support(Trj) is no less than



Clustering-based Anonymization ('RJ, k)
Input: TRJ is a set of trajectories to beanonymized

1. Group same trajectories and foffiRR.J’

2. Sorttrajectories ii'R.J’ in a descending order of supports
3. for eachT'rjin TRJ' do

4 if Trj.support > k then

5. create a new cluster farrj

6 else

7 check existing clusters

8 if Find_Cluster('rj,C) then

9. insertT'rj to clusterC

10. SeleciRepresentativdrajectory(C,Trj,)
11. updateC’s error rate

12. update” — tree

13. else

14. create a new cluster fairj

15. for each cluster C in group of clusters

16. if C.Total TRJ > k/2 thensetC.Total TRJ =k
17.  elseremove C from group of clusters

18. Translate representative trajectories into outpuhétr

Fig. 3. An Outline of Clustering-based Anonymization Algorithm

4.2 Finding Candidate Clusters

In this subsection, we present how to find a candidate clésternew trajectory during
the clustering-based anonymization. The first step is tolkcldether a new trajectory
can be absorbed by an existing cluster according to thentistaetric. As the number
of clusters increases, compariig; with all clusters becomes very costly. Therefore,
we employ an in-memory index structure, C-tree (Clustee}rto prune unnecessary
comparisons. In particular, each node in the C-tree costainltiple entries and each
entry in a node has two fields: a poinjgr and a set of road IDs (denoted&$ D). In
leaf nodes, each entry has a pointer to a cluster and the IBsadé occurring in that
cluster. In internal nodes, each entry has a pointer to d adoile and the union of roads
IDs in its child node. Figure 4 shows an example C-tree.

N,
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N, Ns
|{ r1"2"5}| {Farslglg }| | |{rer7r10}| {FeT11l13 }| |
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Fig. 4. An Example C-tree




Given a new trajector{'rj, starting from the root of the C-tree, we calculate the
similarity betweenl'rj and every entry'sRID in the node by using the following
similarity function.

|S(Trj) N RID|

Sime(Trj, RID) = ——gns

3)

Sim. computes the percentage of common roads includebrinand RID, where
S(Trj) denotes the set of road IDs in trajectdry;. If Sim, is above a thresholg,

we continue to visit the child node of this entry. This pracissrepeated until we find
all entries in the leaf nodes witkim,. above the threshold. All the clusters belonging to
these entries will be considered as candidate clustergx@onple, suppose that a new
trajectory contains roads, rs andrg, and the threshold is set to 60%. The similarity
Sim. between the new trajectory and the first and second entrigr®iroot nodeV,

are 100% and 0% respectively. The tree below the second isntryned and thus we
do not need to visit nod&’s. We continue to visit the child nod®, pointed by the
first entry. TheSim. between the trajectory and the first and second entri@giare
33% and 67% respectively. Since the second entry has th&asiyniscore above the
threshold, its corresponding clust€8 becomes the candidate cluster for the further
consideration.

Among candidate clusters, we further calculate the ediadie between the new
trajectory and their representative trajectories. Forchisters which have the short-
est edit distance witfl'rj, we examine the quality of anonymization result (i.e. error
rate (E)) by assuming insertirifrj to a cluster. For a cluster;, its error rateF,, is
computed based on the roads in this cluster. We select teechhat satisfies two con-
ditions: (i) it yields the smallest error rate after insegti'rj; (i) its new error rate is

Find _Cluster (T'rj,C)
Input: T'rj is a trajectory
Output:C'is a cluster

1. NODE « {C-tree.roo}

2. while (NODE is not empty)do

3. for each nodeV in NODE do

4 for each entnen in N do

5. if Simc(Trj,en.RID) > pthen

6 if N is not a leaf nod¢hen

7. adden’s child node toNODE

8. elseadden’s cluster to candidate lidt.
9. for all clustersinL. do

10. find clusters with shortest edit distance with;j
11. if more than one clusters fourigen

12. find the cluster with the smallest error rate
13.  if error rate after addin@'rj does not exceed threshdlien
14. return the cluster found

Fig. 5. Algorithm of Finding Clusters



Road ID| Original |[Anonymized

+ 30 33
rl+(r3—(r10--.- ri= 15 15
t| 50 51

2= 53 57
+| 35 35
13 =

80 85

)

rn

Fig. 6. Anonymization Table

below the global threshol@rr. Figure 5 summarizes the procedure of finding candi-
date clusters.

To efficiently and incrementally calculate error rates dgrtlustering, we employ
a global data structure, i.anonymization tableAnonymization table has three fields:
roadID, original and anonymizedwhere “original” is the number of objects before
anonymization, and “anonymized” records the latest nunab@bjects on roadoa-
dID during anonymization. Each cluster only needs to maintaataf road IDs with
pointers referring to the anonymization table. Figure @siitates the data structure.

When actually insertin@'rj to C;, there are three steps: (i) update the representative
trajectory; (ii) update the error rate in the anonymizataiole; and (iii) update the C-
tree. The algorithm for selecting the representativedtajy is presented in Section 4.3.
Once the representative trajectory is chosen, we recontipaitaror rate and modify the
corresponding field in the anonymization table. Finally,check whether the node in
the C-tree with respect to current cluster needs to be upgdéturrent cluster contains
road IDs which are not included in the road ID list of the cepending C-tree entry,
we will append the new road IDs to the road ID list. This changlebe propagated
to higher levels of the C-tree until an entry containing elid IDs in current cluster is
reached. Consider the C-tree in Figure 4 and suppose that tiajectory that consists
of roadsrs, s andry will be inserted into cluste€;. We check the road list af’s’'s
entry in the C-tree, which i§rsrsrsrg } and does not contairy. We then add:, to the
road list. Now the second entry in the C-tree becofnessrsrsrg }. Next, we check its
parent entry, the first entry ifV;. Sincer; is included in the first entry idvy, the tree
update operation completes.

If no cluster is similar enough t&'rj, we create a new cluster fa@tr;j and follow
the three similar steps discussed in the previous paragfégghmain difference is that
we need to insert a new entry for this new cluster to the C{ttezinsertion algorithm
is in Section 4.4).

4.3 Selecting Representative Trajectory

There are two key requirements when selecting a representedjectory. First, the
error rate should be minimized. Second, the representatijectory must satisfy the
road-network constraint. By keeping these in mind, we desig following algorithm.



In a cluster, we find the trajectory with the highest suppod then trim the trajec-
tory from both ends to obtain the final representative ttajgcTo illustrate it, we use
the example in Figure 7. The cluster contains three typesjefdtories?rj;, T'rj2 and
Trjs. Each trajectory is associated with a number of support, eugport(T'rj;) =
10. Numbers on the last line indicates the original numb&tsers on each road, e.g.,
original(ning)=15. SinceT'rj; has the highest support, let us have a further look at
it. We compute the error rate by treatingTrj; as the representative trajectory. The
support of the representative trajectory is the sum of ajettories in the cluster. The
reason behind is to maintain the same amount of trajectaftes anonymization. In
this example, if we us@'rj; as the representative trajectory, we will have- 58%.

Trji (10): ni— no—— na—— ny—— ng——mngo
Trj2 (5): mi—no——mna—nz

TTjg (6) no——Ng——N7——nNsg
original: 15 21 21 16 10

Fig. 7. An Example of Selecting Representative Trajectory

E=(Eniny, ¥ EnynytEnyng ¥ Enpng ¥ Engng)/5

(21;515 + 2127121 + 21;121 + 211%16 + 2117010)
N 5

Observe thai,,,,, is higher than 100%. If the roadsng is excluded from the
representative trajectofd/rj,, the overall error can be reduced to 34%. Based on this
observation, the second step is to trim the trajectory uhéloverall error rate can-
not be further reduced. Due to the road-network constraiatcan not arbitrarily re-
move nodes from a trajectory. Our strategy is to remove nstgtng from both ends
of the selected trajectory if the roadsatisfies the following conditioniriginal, <
support(Trj1) — original,., i.e., its individual error rate larger than 100%. The pro-
cess continues until we cannot find such a road at either etk dfajectory. The final
representative trajectory for the example case;is:nsn7ng. The algorithm is sum-
marized in Figure 8.

= 58%

4.4 Construction of the C-tree

In Section 4.2, we have discussed the search and updatdiopsria the C-tree. We
now proceed to introduce how to insert a new entry into thee€;twhich occurs when
a new cluster is created. Recall that each entry in the notteed-tree has two fields:
(i) a set of road IDs and (ii) a pointer. The maximum numberrmgfies in each node
is the same. All insertions start at a leaf node which is iifiedtduring the process of
finding candidate clusters. We insert the new entry into tioate (denoted a&’) with
the following steps:

1. Ifthe nodeN contains fewer than the maximum legal number of entries there
is room for the new entry. Insert the new entry in the node.



SelectRepresentativeTrajectory (C,Trj,)
Input: C'is a cluster
Output:T'rj, is the representative trajectory

1. support{’rj.)«— 0

2. for eachTrjin C do

3 if support{"rj) >support{"rj,) then

4. Trj. «— Trj

5. support{’rj,) < support{’r;)

6. i« 1;j <« length(Trj-)-1

7. continue— 1

8. while (i < j andcontinue) do

9. continue— 0

10.  if original(r;) <support{'rj.)-original(-;) then
11. i« i+ 1; continue— 1

12.  if original(r;) <support{rj,)-original(r;) then
13. j < j — 1; continue— 1

14. Trj, —(r;...r5)

15. returnl'rj,

Fig. 8. Algorithm of Selecting Representative Trajectory

2. OtherwiseN is full, and we evenly split it into two nodes. In particulare ran-
domly select an entry as seed. Then we comptite. (Equation 3) between other
entries and the seed. The average ofSéth,. serves as a separation value. Entries
with Sim,. above the average are put in the nddeand the remaining entries are
put in the new right nod&’.

3. Next, we update the entry pointing 2. The road ID set in the parent is updated
to include all roads occur itV. The update may be propagated to the upper levels
of the tree. Moreover, if there is a split in the previous step need to insert a new
entry which includes road IDs in the new nodg to the parent level. This may
cause the tree to be split, and so on. If current node has emp@e., the node is
the root), a new root will be created above this one.

5 Experimental Study

All the experiments were run on a PC with 2.6G Pentium IV CPJ 38B RAM. We
use both synthetic and real road networks to generate maobjegts. In the synthetic
datasets, objects are moving on a randomly generated ropdvimah has about 700
roads. Objects can have different speeds which are coedrbl} the parameter “aver-
age trajectory length”. As for the real datasets, we use émegtor by Brinkhoff [6].
Objects are moving on real road networks. A road consistsudfipe segments and
each segmentis a straight line. An object is initially pthoa a randomly selected road
segment and then moves along this segment in a randomlyesidicection. When the
object reaches the end of the segment, an update is issuedcamhected segment is
selected. Object speeds are varied within a given speeérang



We compare our Clustering-Based Anonymization (CBA) atar with the latest
work (denoted as Prefix [14]) by Pensa et al. In particularewemine the existence
of the inference route, the error rate, standard deviatimhthe running time. Unless
noted otherwise we use the dataset containing 50,000 mobiegts and seét to 30.

5.1 Experimental Results in Synthetic Datasets

Effect of Data Sizes|n the first set of experiments, we study the effect of datassizy
varying the number of moving objects (i.e. number of trajees) from 5K to 100K.
Figure 9(a) shows the average error rate of the anonymirzaggults obtained from Pre-
fix algorithm and our CBA algorithm. We can observe that theAGHyorithm yields
much less error rate than the Prefix algorithm in all casesethe dataset is small
(e.g. 5K), the anonymization results obtained from botleatgms have relatively high
error rates. This is because the number of objects on eadhigéaw and even a small
change of an object trajectory by the anonymization proséissave a big impact on
the error rate. With the increase of the data sizes, the eatercaused by the CBA al-
gorithm keeps decreasing and it is more than 5 times lessaa@dpo that of the Prefix
algorithm for 100K dataset. The reason of such behavioris@BA effectively groups
similar trajectories and carefully selects represengati@jectories which minimize the
overall error rate. Figure 9(b) shows the standard deviatitnere we can see that our
standard deviation is much lower than that obtained fromRtefix algorithm. This
confirms that our anonymization result on each road hasaiinigood quality.

Figure 10(a) shows the number of nodes having the infereute problem. It is not
surprising to see that the anonymization result producedibZBA algorithm contains
0 inference route. However, the anonymized result obtaired the Prefix algorithm
has many road intersections (denoted as node) with thesiméerroute problem caused
by their definition of the trajectory support.

We also compare the running time of both approaches. As siowigure 10, our
CBA algorithm is up to 5 times faster than the Prefix algoritftnis can be attributed
to the C-tree that helps prune the clusters to be comparédeaith new trajectory and
hence avoids many unnecessary calculation. The total snmelusive of the construc-
tion and update cost of the C-tree which is almost negleetatinpared to the benefits
brought by the C-tree.
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Fig. 9. Quality of the Anonymized Results
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Fig. 10.Effect of Data Size

Effect of Parameter k This set of experiments aims to evaluate the performance of
both algorithms regarding different values /af As shown in Figure 11(a), the error
rate increases drastically withby using the Prefix algorithm, while has only minor
effect on our CBA approach. Such behavior can be explainddllasvs. The Prefix
algorithm removes all infrequent trajectories and addrtiepports to most similar
frequent trajectories. Wheéhnis large, there are more infrequent trajectories, whick thu
causes more error. The standard deviation has also dematausthe similar pattern as
the error rate, and the Prefix algorithm again suffers froeniifierence route problem.
Due to the space limit, we do not include the figures here. Rigg processing time
(in Figure 11(b)), our CBA approach has a consistent perfoice while the Prefix
approach requires less time for larderThis is because the Prefix approach needs to
deal with less frequent trajectories for a largeNote that this results in higher error
rates.
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Fig. 11.Varying Parametek

Effect of the Average Trajectory Length We also investigated the effect of trajectory
lengths by testing it up to 50 roads per trajectory. Withimshme time interval, a longer
trajectory indicates that the object has a faster speedOB#&ralgorithm outperforms
the Prefix algorithm in all cases. Please refer to our teehnéport [?] for figures.



5.2 Experimental Results in Real Datasets

In this set of experiments, the datasets are generated basbé road map of Phelps
County (Missouri, USA) using the generator [6]. The valué @6 10. From Figure 12,
we can observe similar performance patterns as that usimbesyc datasets.

70 1 —£+— Prefix 45 1

—=—CBA

60 40 7

50 35

40 + 30

Error rate (%)

Standard Deviation (%)

30 25

20 20

10,000 25000 50,000 75,000 100,000 10,000 25,000 50,000 75,000 100,000

Number of moving objects Number of moving objects
(a) Error rate (b) Standard deviation
4500 T o profic 0T o prefix
$ w000 4 o 35 4 ——CBA -
o e o
S 3500 T 5 g T 30 =
Vs g
g 3000 T Basd y
§ 2500 T = s
< =20 +
£ 2000 + =
s e 15 4
g 1500 T 8
| 3 4
£ 1000 T 210
2 500 51
0 f . . : ! 0 | : | | |
10,000 25,000 50,000 75,000 100,000 10,000 25000 50,000 75,000 100,000
Number of moving objects Number of moving objects
(c) Inference route problem (d) Processing time

Fig. 12. Performance in Real Road-network

6 Conclusion

Privacy preserving location data publishing has receimecsiasing interest nowadays.
In this paper, we address this newly emerging problem bytgiito account an impor-
tant factor, the road network constraint, which has beemlosked by many existing
works. We identified and defined a new privacy problem (i.e.itifierence route prob-
lem), and proposed an efficient and effective clusterinsedanonymization algorithm.
The clustering-based algorithm guarantees skriahonymity of the published dataset
and avoids the inference route problem. We compared ouoappmwith the most re-
cent work and the experimental results demonstrate theisuipeof our approach.
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