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Abstract. We are experiencing the expanding use of location-based services
such as AT&T TeleNav GPS Navigator and Intel’s Thing Finder.Existing location-
based services have collected a large amount of location data, which have great
potential for statistical usage in applications like traffic flow analysis, infras-
tructure planning and advertisement dissemination. The key challenge is how to
wisely use the data without violating each user’s location privacy concerns. In this
paper, we first identify a new privacy problem, namelyinference routeproblem,
and then present our anonymization algorithms for privacy-preserving trajectory
publishing. The experimental results have shown that our approach outperforms
the latest related work in terms of both efficiency and effectiveness.

1 Introduction

The extensive use of location-based services, such as AT&T TeleNav GPS Navigator,
Sprint’s Family Locator, and Intel’s Thing Finder, have collected a large amount of
location data. If information like vehicle IDs and moving directions on roads can be
published, people in many fields will benefit from it. With respect to the public sector,
traffic flow information can be extracted from published IDs and moving directions.
Such information will play an important role in infrastructure construction and traffic
light control. With respect to the business domain, traffic information can help decide
the location of company branches, and also advertisements can be customized and dis-
seminated at the most advantageous locations. With respectto our daily lives, traffic
information is certainly useful for detecting and predicting traffic jam, and calculating
better routes in an emergency (e.g., for ambulances). However, in the meantime, loca-
tion privacy concerns [11, 16] may hinder the development ofsuch attractive usage of
traffic information. It is well known that using a pseudonym is not sufficient to prevent
the linkage of a published location to a real ID [5]. The key challenge is how to wisely
use the location data without violating each user’s privacyconcerns. This problem is
termed asprivacy preserving historical location data publishing.

Historical location data forms a sequence of locations in chronological order, termed
astrajectory. In general, one’s trajectory consists of roads he has visited. For instance,
in Figure 1, useru1’s trajectory can be represented asIABC and useru4’s trajectory
is ABD. Such road-network based trajectories are valuable in aforementioned applica-
tions. In privacy-preserving location publishing, the goal is to prevent adversaries from
mapping published locations to a specific individual.
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Fig. 1. An Example of Inference Route

One may think that a trajectory resembles a conventional sequential pattern. Hence,
a naturally raised question is that if we can directly employprivacy preserving data
publishing approaches [3, 4, 13, 20] developed in non-spatial-temporal databases? The
answer is negative, and the main reason is that a trajectory distinguishes itself from the
conventional sequential patterns due to additional constraints (e.g., road-network infor-
mation) which do not exist in the traditional sequences. More specifically, elements in
traditional sequences are usually independent of one another, while the relationship of
elements in the trajectory sequence is fixed under a particular road-network informa-
tion. Therefore, we cannot use traditional algorithms to arbitrarily remove or replace
elements in the sequences because such operations will create unrealistic trajectories
consisting of non-connected road segments.

There have been several recent efforts [2, 7, 12, 17] on anonymizing trajectories.
Some work [17] considers trajectories as a sequence of landmarks, e.g., stores and mu-
seums, which ignore the paths connecting these places. Others [2, 7, 12] consider tra-
jectories as a sequence of coordinates in Euclidean space but ignore the road-network
constraints. Very few works considered the road-network constraint. The most recent
one is by Pensa et al. [14], who anonymize road-network-based trajectories based on
k-anonymity [15]. However, their approach may not preserve trajectory information as
much as possible. This can be demonstrated by the example given below.

In [14], trajectories are stored and anonymized by using a prefix tree which may not
be an appropriate structure to model the road-network. For instance, consider four users
who leave their homes (I, J , K, D) and head for work. Whenk is 3 and the input to
their algorithm is the following four trajectories:u1(IABC), u2(JABC), u3(KABC)
andu4(ABD)1, their anonymization result will be an empty set since the prefix tree
treats trajectories with different starting points independently. Such result obviously
lost too much useful information. To achieve better information utility, an alternative
way is to directly take partial trajectories as input, i.e.,consider only busy roads with
more thank users. In this case, the input becomesu1(ABC), u2(ABC), u3(ABC) and
u4(AB), and the new anonymization result is :u′

1(ABC), u′

2(ABC), u′

3(ABC) and
u′

4(AB), which is more meaningful than the previous empty set.
In addition, since road maps can be found everywhere, in the domain of privacy-

preserving location publishing, it is reasonable to assumeroad-network information

1 u1, u2, u3 andu4 can be thought as either a trajectory ID or a person’s symbolic ID.



is available to any adversary. Thus, cautions are very much needed when publishing
anonymized trajectories. For instance, let us continue from the previous example and
assume that the road-network in Figure 1 is accessible to an adversary Bob. Whenu′

1,
u′

2,u′

3 andu′

4 are published, using the road-network, Bob can infer thatu′

4 was also trav-
elled on the road segmentBD. Also, if Bob knows that Alice usually travels onBD,
then he can linku′

4 to Alice and consequently track Alice remaining trajectories in the
published dataset. Thisinference route problemis caused by the fact that an adversary
can infer someone’s unpublished infrequent trajectories from the published location
dataset. Because the inferred trajectories are infrequent, with high probability, these
trajectories, combined with certain external knowledge, can be used to identify a par-
ticular individual’s trajectory information in the published dataset. In general, given a
thresholdk, if the attacker can link any anonymous ID to Alice with probability greater
than 1

k
by using the above method, then we say there is an inference route problem.

In this paper, we address the problem of privacy-preservinglocation data publish-
ing under the assumption that road-network data are public information. Our approach
has three main properties: (1) it guaranteesk-anonymity of published data, (2) it avoids
the inference route problem, and (3) the anonymization results follow the road-network
constraints. The basic idea is to employ a clustering-basedanonymization algorithm to
group similar trajectories and minimize the data distortion caused by anonymization
through a careful selection of representative trajectories. We propose a C-Tree (Cluster-
Tree) to speed up the clustering process and develop methodsto incrementally calculat-
ing error rates. The rest of the paper is organized as follows: Section 2 reviews related
work, Section 3 presents our proposed approach, Section 4 reports experimental results,
and Section 5 concludes the paper with lessons learned and future research directions.

2 Related Work

Privacy-preserving location publishing is a relatively young area in which little research
has been carried out. In [7, 12], the spatial-temporal cloaking technique is applied to
generate cloaking regions covering segments of trajectories. In [2], Abul et al. consider
a trajectory as a cylindrical volume where the radius represents the location impreci-
sion. Then they perturb and cluster trajectories with overlapping volumes to ensure that
each released trajectory volume encloses at leastk − 1 other trajectories. Unlike the
previous work which is based on the similarity of trajectories, Yarovoy et al. [19] group
trajectories based on so-called quasi-identifiers which ishard to be selected in practice.
None of the approaches considers the impacts of road networkconstraints and hence,
their anonymization results are vulnerable to attack when the malicious party knows the
road map or holds some other background knowledge. E.g., if acloaking region covers
only one road, the corresponding trajectory can be easily mapped to the road.

In [17], Terrovitis and Mamoulis assume that the adversaries know partial trajectory
information of some individuals. They use it as part of inputto their anonymization al-
gorithm. Such usage limits the generality and feasibility of their approach. In [1], Abul
et al. used a coarsening strategy which removes one or more spatial points in a trajectory
to achieve anonymization. An anonymized trajectory may contain disconnected paths.
This is different from our approach which preserves continuous trajectories based on
road-network information. Two other related works used time confusion and path con-



fusion respectively. The time confusion approach [9] mixeslocation samples of differ-
ent trajectories, and the path confusion approach [8] crosses paths in areas where at
least two users meet. The main problem of the two approaches is that traffic flows are
no longer preserved.

The most related work is by Pensa et al. [14]. They proposed a prefix-tree based
anonymization algorithm which guaranteesk-anonymity of the published trajectories
in a way that no trajectories with support less thank will be published. They defined
the support of a trajectoryTrj as the number of trajectories containingTrj, which
however causes the inference route problem. Here, we can seethat how the concept of
k-anonymity is applied will affect the quality of the anonymization result.

3 Problem Statement

In general, raw data collected by location-based applications contains user (object) in-
formation as a four-tuple〈ID, loc, vel, t〉, whereID is the object ID,loc andvel are
object location and velocity at timestampt respectively. The anonymized dataset con-
tains object information in the form of〈aid, rid, dir〉, whereaid is an anonymized
object ID,rid is a road ID anddir is the object’s moving direction. Here, for privacy
concerns, we replace specific locations and velocities by road ID and moving direction.
Such representation is sufficient to derive trajectories ortraffic flow information.

The road network is modeled as a directed graph, where each edge corresponds to
a road and each node represents an intersection. Specifically, an edge is represented as
ninj, whereni andnj denote nodes. We then proceed to define the frequent road and
inference route problem.

Definition 1 Let W be a time interval, and letk be a threshold. We say a road is a
frequent road if the number of moving objects moving along one direction on this road
is no less thank within timeW . We call the number of moving objects the frequency of
the road.

Definition 2 LetΥ be an intersection of roadsr1, ...,rm, and letU+

i , U−

i be the sets of
objects moving toward and outwardΥ on roadri (1 ≤ i ≤ m) duringW , respectively.
If ∃ U+

i , U−

j , |U+

i | ≥ k, |U−

j | ≥ k, and (0< |U+

i − U−

j | < k or 0< |U−

j − U+

i | < k),
then we sayΥ has aninference routeproblem.

To have a better understanding of the above definition, let usrevisit the example in
Figure 1. NodeB is an intersection of three roads. On roadAB, U+

AB = {u1,u2,u3, u4};
on roadBC, U−

BC={u1,u2,u3}. SinceU+

AB − U−

BC = {u4}, |U+

AB − U−

BC | = 1< k,
nodeB has an inference route problem.

Next, we present how to evaluate the quality of the anonymized dataset or trajec-
tories. Intuitively, the less difference between the anonymized dataset and the original
dataset, the better quality the anonymized dataset is. Therefore, we use two common
metrics: average error rate and standard deviation. Suppose there areN roads (or edges
in a road-network graph) andri represents roadi. Let originalri

andanonymizedri

denoteri’s original frequency and frequency after the trajectorieshave been anonymized.
Then in Equation 1, the error functionE is defined as the average difference between
originalri

andanonymizedri
(i.e., Ei), andσ is the standard deviation of the error



rates. A low standard deviation indicates that the anonymization quality of each road is
similar and close to the average error rate.
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4 Our Approach

In this section, we present our anonymization algorithm. Itconsists of two main steps.
First, from the raw datasetD, we remove records associated with infrequent roads, i.e.,
roads with less thank objects within a given time interval. We denote the obtained
dataset asD′. In D′, we construct partial trajectories for the remaining objects based on
moving directions. Note that one user may have several disconnected partial trajectories
because he may visit some infrequent roads. Each partial trajectory will be assigned an
anonymous ID. For the rest of the paper, the word “trajectory” and “partial trajectory”
are interchangeable.

The second step is the core of the anonymization process. We propose a clustering-
based anonymization algorithm which guarantees that by achieving strictk-anonymity
(defined in Section 4.1) among partial trajectories, our anonymization result is free of
the inference route problem. Compared to traditionalk-anonymization approaches, our
approach not only needs to minimize errors caused by anonymization but also needs to
satisfy some unique requirements. Road-network constraints should be enforced during
the entire anonymization process, especially when computing the representative trajec-
tories. The first step is relatively straightforward. Therefore, the following discussion
focuses on the anonymization step.

4.1 Clustering-based Anonymization

The essential idea of clustering-based anonymization algorithm is to find clusters of
similar trajectories and anonymize them by using a representative trajectory. The details
are the following.

First, we need to select a proper way to represent trajectories. Trajectories are ini-
tially represented as a sequence of timestamped locations.In our anonymized dataset,
we do not disclose exact locations because detailed information increases attackers’
chances to link published location to specific individuals.Instead, we report only infor-
mation about which object passing by which road. There are two options: (i) represent-
ing a trajectory by road IDs; or (ii) representing a trajectory by node IDs. As illustrated
in Figure 2, trajectoriesTrj1, Trj2 andTrj3 can be represented asr4r2, r1r3, and
r1r5 respectively following the first option. Using the second option, trajectoriesTrj1,
Trj2 andTrj3 can be represented asn5n2n3, n1n2n4, andn1n2n6 respectively. Both
types of representations well capture the similarity between trajectoriesTrj2 andTrj3
which share one common road. However, the first option treatsTrj1 andTrj2 as two
irrelevant trajectories even though they intersect. To better reflect relationships among



5 n6

n3

n1

r 5

r 2

r 4

n2
r 3

n4
r 1

1Trj

Trj
3

2Trj

n

Fig. 2.Trajectory Representation

trajectories, we adopt the second option and represent a trajectory by a sequence of
node IDs.

The second issue is to define the distance between trajectories. We employ theedit
distance[18]. The edit distance between two trajectories is given bythe minimum num-
ber of operations needed to transform one trajectory into the other, where an operation
is an insertion, deletion, or substitution of a node. For example, the edit distance be-
tweenTrj1(n5n2n3) andTrj2(n1n2n4) is 4, while the distance betweenTrj2 and
Trj3(n1n2n6) is 2.

Now we are ready to present our clustering-based anonymization algorithm. An
outline is given in Figure 3. First, we group same trajectories and count itssupport.
Support is defined as the number of users who have the same trajectories (Definition 3).

Definition 3 Let u be a user’s anonymous ID andTrju denote his trajectory inD′.
We have the support of trajectoryTrj as follows: Support(Trj) =|{u|Trju = Trj, for
every u}|.

Distinct trajectories are arranged in a descending order oftheir supports. If a trajec-
tory’s support is more than the anonymization thresholdk, the trajectory itself forms a
cluster. For the remaining trajectories, sayTrj, we compare it with existing clusters.
If there exists a suitable cluster, we insert the new trajectory into that cluster and up-
date the cluster’s information. Otherwise, a new cluster will be created forTrj. After
all trajectories have been checked, we translate representative trajectories together with
their supports into output format, which contains object anonymious IDs, road IDs, and
objects’ moving directions. For example, we obtain the following intermediate result
after anonymizing the trajectories shown in Figure 1:u′

1(ABC), u′

2(ABC), u′

3(ABC)
andu′

4(ABC), wherek = 3. The published dataset will look like this:(u′

1, R1, AB),
(u′

1, R2, BC), (u′

2, R1, AB), (u′

2, R2, BC), ..., (u′

4, R2, BC). The detailed algorithms
for finding candidate clusters, calculation of error rates and selection of representative
trajectories will be elaborated in the rest of the section.

Our approach ensures strictk-anonymity (Definition 4) over all trajectories in dataset
D′. It is called “strict” because the calculation of trajectory supports is based on an ex-
act match of entire trajectories. In this way, we guarantee that the anonymization result
will not contain any inference route. Our proof can be found in [10].

Definition 4 (Strict k-anonymity over trajectories): LetTrj be a trajectory. We say
Trj satisfies strictk-anonymity if Support(Trj) is no less thank.



Clustering-based Anonymization (TRJ , k)
Input:TRJ is a set of trajectories to bek-anonymized

1. Group same trajectories and formTRJ ′

2. Sort trajectories inTRJ ′ in a descending order of supports
3. for eachTrj in TRJ ′ do
4. if Trj.support ≥ k then
5. create a new cluster forTrj
6. else
7. check existing clusters
8. if Find Cluster(Trj,C) then
9. insertTrj to clusterC
10. SelectRepresentativeTrajectory(C,Trjr)
11. updateC ’s error rate
12. updateC − tree
13. else
14. create a new cluster forTrj
15. for each cluster C in group of clusters
16. if C.Total TRJ ≥ k/2 then setC.Total TRJ = k
17. elseremove C from group of clusters
18. Translate representative trajectories into output format

Fig. 3. An Outline of Clustering-based Anonymization Algorithm

4.2 Finding Candidate Clusters

In this subsection, we present how to find a candidate clusterfor a new trajectory during
the clustering-based anonymization. The first step is to check whether a new trajectory
can be absorbed by an existing cluster according to the distance metric. As the number
of clusters increases, comparingTrj with all clusters becomes very costly. Therefore,
we employ an in-memory index structure, C-tree (Cluster-tree), to prune unnecessary
comparisons. In particular, each node in the C-tree contains multiple entries and each
entry in a node has two fields: a pointerptr and a set of road IDs (denoted asRID). In
leaf nodes, each entry has a pointer to a cluster and the IDs ofroads occurring in that
cluster. In internal nodes, each entry has a pointer to a child node and the union of roads
IDs in its child node. Figure 4 shows an example C-tree.
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Fig. 4. An Example C-tree



Given a new trajectoryTrj, starting from the root of the C-tree, we calculate the
similarity betweenTrj and every entry’sRID in the node by using the following
similarity function.

Simc(Trj, RID) =
|S(Trj) ∩ RID|

|S(Trj)|
(3)

Simc computes the percentage of common roads included inTrj andRID, where
S(Trj) denotes the set of road IDs in trajectoryTrj. If Simc is above a thresholdρ,
we continue to visit the child node of this entry. This process is repeated until we find
all entries in the leaf nodes withSimc above the threshold. All the clusters belonging to
these entries will be considered as candidate clusters. Forexample, suppose that a new
trajectory contains roadsr2, r8 andr9, and the thresholdρ is set to 60%. The similarity
Simc between the new trajectory and the first and second entries inthe root nodeN1

are 100% and 0% respectively. The tree below the second entryis pruned and thus we
do not need to visit nodeN3. We continue to visit the child nodeN2 pointed by the
first entry. TheSimc between the trajectory and the first and second entries inN2 are
33% and 67% respectively. Since the second entry has the similarity score above the
threshold, its corresponding clusterC3 becomes the candidate cluster for the further
consideration.

Among candidate clusters, we further calculate the edit distance between the new
trajectory and their representative trajectories. For allclusters which have the short-
est edit distance withTrj, we examine the quality of anonymization result (i.e. error
rate (E)) by assuming insertingTrj to a cluster. For a clusterCi, its error rateEci

is
computed based on the roads in this cluster. We select the cluster that satisfies two con-
ditions: (i) it yields the smallest error rate after inserting Trj; (ii) its new error rate is

Find Cluster (Trj,C)
Input:Trj is a trajectory
Output:C is a cluster

1. NODE ← {C-tree.root}
2. while (NODE is not empty)do
3. for each nodeN in NODE do
4. for each entryen in N do
5. if Simc(Trj, en.RID) > ρ then
6. if N is not a leaf nodethen
7. adden’s child node toNODE
8. elseadden’s cluster to candidate listLc

9. for all clusters inLc do
10. find clusters with shortest edit distance withTrj
11. if more than one clusters foundthen
12. find the cluster with the smallest error rate
13. if error rate after addingTrj does not exceed thresholdthen
14. return the cluster found

Fig. 5. Algorithm of Finding Clusters
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below the global thresholdErr. Figure 5 summarizes the procedure of finding candi-
date clusters.

To efficiently and incrementally calculate error rates during clustering, we employ
a global data structure, i.e.anonymization table. Anonymization table has three fields:
roadID, original and anonymized, where “original” is the number of objects before
anonymization, and “anonymized” records the latest numberof objects on roadroa-
dID during anonymization. Each cluster only needs to maintain aset of road IDs with
pointers referring to the anonymization table. Figure 6 illustrates the data structure.

When actually insertingTrj toCi, there are three steps: (i) update the representative
trajectory; (ii) update the error rate in the anonymizationtable; and (iii) update the C-
tree. The algorithm for selecting the representative trajectory is presented in Section 4.3.
Once the representative trajectory is chosen, we recomputethe error rate and modify the
corresponding field in the anonymization table. Finally, wecheck whether the node in
the C-tree with respect to current cluster needs to be updated. If current cluster contains
road IDs which are not included in the road ID list of the corresponding C-tree entry,
we will append the new road IDs to the road ID list. This changewill be propagated
to higher levels of the C-tree until an entry containing all road IDs in current cluster is
reached. Consider the C-tree in Figure 4 and suppose that a new trajectory that consists
of roadsr2, r8 andr9 will be inserted into clusterC3. We check the road list ofC3’s
entry in the C-tree, which is{r3r5r8r9} and does not containr2. We then addr2 to the
road list. Now the second entry in the C-tree becomes{r2r3r5r8r9}. Next, we check its
parent entry, the first entry inN1. Sincer2 is included in the first entry inN1, the tree
update operation completes.

If no cluster is similar enough toTrj, we create a new cluster forTrj and follow
the three similar steps discussed in the previous paragraph. The main difference is that
we need to insert a new entry for this new cluster to the C-tree(the insertion algorithm
is in Section 4.4).

4.3 Selecting Representative Trajectory

There are two key requirements when selecting a representative trajectory. First, the
error rate should be minimized. Second, the representativetrajectory must satisfy the
road-network constraint. By keeping these in mind, we design the following algorithm.



In a cluster, we find the trajectory with the highest support and then trim the trajec-
tory from both ends to obtain the final representative trajectory. To illustrate it, we use
the example in Figure 7. The cluster contains three types of trajectories:Trj1, Trj2 and
Trj3. Each trajectory is associated with a number of support, e.g., support(Trj1) =
10. Numbers on the last line indicates the original numbers of users on each road, e.g.,
original(n1n2)=15. SinceTrj1 has the highest support, let us have a further look at
it. We compute the error rateE by treatingTrj1 as the representative trajectory. The
support of the representative trajectory is the sum of all trajectories in the cluster. The
reason behind is to maintain the same amount of trajectoriesafter anonymization. In
this example, if we useTrj1 as the representative trajectory, we will haveE = 58%.

Trj1 (10):n1—– n2—– n4—– n7—– n8—– n9

Trj2 (5): n1—– n2—– n4—– n7

Trj3 (6): n2—– n4—– n7—– n8

original: 15 21 21 16 10

Fig. 7. An Example of Selecting Representative Trajectory

E = (En1n2
+ En2n4

+En4n7
+En7n8

+En8n9
)/5

=
(21−15

15
+ 21−21

21
+ 21−21

21
+ 21−16

16
+ 21−10

10
)

5
= 58%

Observe thatEn8n9
is higher than 100%. If the roadn8n9 is excluded from the

representative trajectoryTrj1, the overall error can be reduced to 34%. Based on this
observation, the second step is to trim the trajectory untilthe overall error rate can-
not be further reduced. Due to the road-network constraint,we can not arbitrarily re-
move nodes from a trajectory. Our strategy is to remove nodesstarting from both ends
of the selected trajectory if the roadr satisfies the following condition:originalr <

support(Trj1) − originalr, i.e., its individual error rate larger than 100%. The pro-
cess continues until we cannot find such a road at either end ofthe trajectory. The final
representative trajectory for the example case isn1n2n4n7n8. The algorithm is sum-
marized in Figure 8.

4.4 Construction of the C-tree

In Section 4.2, we have discussed the search and update operations in the C-tree. We
now proceed to introduce how to insert a new entry into the C-tree, which occurs when
a new cluster is created. Recall that each entry in the node ofthe C-tree has two fields:
(i) a set of road IDs and (ii) a pointer. The maximum number of entries in each node
is the same. All insertions start at a leaf node which is identified during the process of
finding candidate clusters. We insert the new entry into thatnode (denoted asN ) with
the following steps:

1. If the nodeN contains fewer than the maximum legal number of entries, then there
is room for the new entry. Insert the new entry in the node.



SelectRepresentativeTrajectory ( C,Trjr)
Input:C is a cluster
Output:Trjr is the representative trajectory

1. support(Trjr)← 0
2. for eachTrj in C do
3. if support(Trj) >support(Trjr) then
4. Trjr ← Trj
5. support(Trjr)← support(Trj)
6. i← 1; j ← length(Trjr)-1
7. continue← 1
8. while (i < j andcontinue) do
9. continue← 0
10. if original(ri) <support(Trjr)-original(ri) then
11. i← i + 1; continue← 1
12. if original(rj) <support(Trjr)-original(rj) then
13. j ← j − 1; continue← 1
14. Trjr ←(ri...rj )
15. returnTrjr

Fig. 8. Algorithm of Selecting Representative Trajectory

2. OtherwiseN is full, and we evenly split it into two nodes. In particular,we ran-
domly select an entry as seed. Then we computeSimc (Equation 3) between other
entries and the seed. The average of allSimc serves as a separation value. Entries
with Simc above the average are put in the nodeN , and the remaining entries are
put in the new right nodeN ′.

3. Next, we update the entry pointing toN . The road ID set in the parent is updated
to include all roads occur inN . The update may be propagated to the upper levels
of the tree. Moreover, if there is a split in the previous step, we need to insert a new
entry which includes road IDs in the new nodeN ′ to the parent level. This may
cause the tree to be split, and so on. If current node has no parent (i.e., the node is
the root), a new root will be created above this one.

5 Experimental Study

All the experiments were run on a PC with 2.6G Pentium IV CPU and 3GB RAM. We
use both synthetic and real road networks to generate movingobjects. In the synthetic
datasets, objects are moving on a randomly generated road map which has about 700
roads. Objects can have different speeds which are controlled by the parameter “aver-
age trajectory length”. As for the real datasets, we use the generator by Brinkhoff [6].
Objects are moving on real road networks. A road consists of multiple segments and
each segment is a straight line. An object is initially placed on a randomly selected road
segment and then moves along this segment in a randomly selected direction. When the
object reaches the end of the segment, an update is issued anda connected segment is
selected. Object speeds are varied within a given speed range.



We compare our Clustering-Based Anonymization (CBA) algorithm with the latest
work (denoted as Prefix [14]) by Pensa et al. In particular, weexamine the existence
of the inference route, the error rate, standard deviation and the running time. Unless
noted otherwise we use the dataset containing 50,000 movingobjects and setk to 30.

5.1 Experimental Results in Synthetic Datasets

Effect of Data SizesIn the first set of experiments, we study the effect of data sizes by
varying the number of moving objects (i.e. number of trajectories) from 5K to 100K.
Figure 9(a) shows the average error rate of the anonymization results obtained from Pre-
fix algorithm and our CBA algorithm. We can observe that the CBA algorithm yields
much less error rate than the Prefix algorithm in all cases. When the dataset is small
(e.g. 5K), the anonymization results obtained from both algorithms have relatively high
error rates. This is because the number of objects on each road is few and even a small
change of an object trajectory by the anonymization processwill have a big impact on
the error rate. With the increase of the data sizes, the errorrate caused by the CBA al-
gorithm keeps decreasing and it is more than 5 times less compared to that of the Prefix
algorithm for 100K dataset. The reason of such behavior is that CBA effectively groups
similar trajectories and carefully selects representative trajectories which minimize the
overall error rate. Figure 9(b) shows the standard deviation, where we can see that our
standard deviation is much lower than that obtained from thePrefix algorithm. This
confirms that our anonymization result on each road has similarly good quality.

Figure 10(a) shows the number of nodes having the inference route problem. It is not
surprising to see that the anonymization result produced byour CBA algorithm contains
0 inference route. However, the anonymized result obtainedfrom the Prefix algorithm
has many road intersections (denoted as node) with the inference route problem caused
by their definition of the trajectory support.

We also compare the running time of both approaches. As shownin Figure 10, our
CBA algorithm is up to 5 times faster than the Prefix algorithm. This can be attributed
to the C-tree that helps prune the clusters to be compared with each new trajectory and
hence avoids many unnecessary calculation. The total time is inclusive of the construc-
tion and update cost of the C-tree which is almost neglectable compared to the benefits
brought by the C-tree.

(a) Error rate (b) Standard deviation

Fig. 9. Quality of the Anonymized Results



(a) Inference route problem (b) Processing time

Fig. 10.Effect of Data Size

Effect of Parameter k This set of experiments aims to evaluate the performance of
both algorithms regarding different values ofk. As shown in Figure 11(a), the error
rate increases drastically withk by using the Prefix algorithm, whilek has only minor
effect on our CBA approach. Such behavior can be explained asfollows. The Prefix
algorithm removes all infrequent trajectories and add their supports to most similar
frequent trajectories. Whenk is large, there are more infrequent trajectories, which thus
causes more error. The standard deviation has also demonstrated the similar pattern as
the error rate, and the Prefix algorithm again suffers from the inference route problem.
Due to the space limit, we do not include the figures here. Regarding processing time
(in Figure 11(b)), our CBA approach has a consistent performance while the Prefix
approach requires less time for largerk. This is because the Prefix approach needs to
deal with less frequent trajectories for a largerk. Note that this results in higher error
rates.

(a) Error rate (b) Processing time

Fig. 11.Varying Parameterk

Effect of the Average Trajectory Length We also investigated the effect of trajectory
lengths by testing it up to 50 roads per trajectory. Within the same time interval, a longer
trajectory indicates that the object has a faster speed. OurCBA algorithm outperforms
the Prefix algorithm in all cases. Please refer to our technical report [?] for figures.



5.2 Experimental Results in Real Datasets

In this set of experiments, the datasets are generated basedon the road map of Phelps
County (Missouri, USA) using the generator [6]. The value ofk is 10. From Figure 12,
we can observe similar performance patterns as that using synthetic datasets.

(a) Error rate (b) Standard deviation

(c) Inference route problem (d) Processing time

Fig. 12.Performance in Real Road-network

6 Conclusion
Privacy preserving location data publishing has received increasing interest nowadays.
In this paper, we address this newly emerging problem by taking into account an impor-
tant factor, the road network constraint, which has been overlooked by many existing
works. We identified and defined a new privacy problem (i.e. the inference route prob-
lem), and proposed an efficient and effective clustering-based anonymization algorithm.
The clustering-based algorithm guarantees strictk-anonymity of the published dataset
and avoids the inference route problem. We compared our approach with the most re-
cent work and the experimental results demonstrate the superiority of our approach.
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