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Constrained Control of Dynamic Systems

A summary of what we learned so far

The control methods we discussed do not consider strict constraints on
states, control inputs, etc...

[–] Examples: Constraints on maximum speed, minimum/maximum room
temperature, minimum fuel level

State feedback control, Gramian-based control, observer-based control in
general do not respect these constraints—-they’re not designed to do so
anyway

This module: an introduction to the idea of optimization, optimal control,
and model predictive control
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Solving Unconstrained Optimization Problems

Objective:
minimize

x∈Rn
f(x)

Necessary & Sufficinet Conditions for Optimality
x∗ is a local minimum of f(x) iff:

1 Zero gradient at x∗:
∇xf(x∗) = 0

2 Hessian at x∗ is positive semi-definite:

∇2
xf(x∗) � 0

For maximization, Hessian is negative semi-definite

The idea of local/global minima

Convexity in optimization
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Solving Constrained OPs

Main objective: find/compute minimum or a maximum of an objective
function subject to equality and inequality constraints

Formally, problem defined as finding the optimal x∗:

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

x ∈ Rn

f(x) is scalar function, possibly nonlinear

g(x) ∈ Rm, h(x) ∈ Rl are vectors of constraints

Main Principle
To solve constrained optimization problems: transform constrained
problems to unconstrained ones. How?
Augment the constraints to the cost function.
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General Optimization Problems and KKT Conditions

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

Define the Lagrangian: L(x, λ, µ) = f(x) + λTh(x) + µT g(x)

Optimality Conditions
The constrained optimization problem (above) has a local minimizer x∗ iff
there exists a unique µ∗ such that:

1 ∇xL(x∗, λ∗, µ∗) = ∇xf(x) + λ∗T∇xh(x∗) + µ∗T∇xg(x∗) = 0

2 µ∗j ≥ 0 for j = 1, . . . ,m

3 µ∗jgj(x∗) = 0 for j = 1, . . . ,m

4 gj(x∗) ≤ 0 for j = 1, . . . ,m

5 hi(x∗) = 0 for i = 1, . . . , l (if x∗, µ∗, λ∗ satisfy 1–5, they are candidates)

6 Second order necessary conditions (SONC): ∇2
xL(x∗, λ∗, µ∗) � 0
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KKT Conditions — Example

Find the minimizer of the following optimization problem:
minimize

x
f(x) = (x1 − 1)2 + x2 − 2

subject to g(x) = x1 + x2 − 2 ≤ 0
h(x) = x2 − x1 − 1 = 0

First, find the Lagrangian function:
L(x, λ, µ) = (x1 − 1)2 + x2 − 2 + λ(x2 − x1 − 1) + µ(x1 + x2 − 2)

Second, find the conditions of optimality (from previous slide):

1 ∇xL(x∗, λ∗, µ∗) =
[
2x∗1 − 2− λ∗ + µ∗ 1 + λ∗ + µ∗

]>
=
[
0 0

]>
2 µ∗(x∗1 + x∗2 − 2) = 0
3 µ∗ ≥ 0
4 x∗1 + x∗2 − 2 ≤ 0
5 x∗2 − x

∗
1 − 1 = 0

6 ∇2
xL(x∗, λ∗, µ∗) = ∇2

xf(x∗) + λ∗∇2
xh(x∗) + µ∗∇2

xg(x∗) � 0

=
[
2 0
0 0

]
+ λ∗

[
0 0
0 0

]
+ µ∗

[
0 0
0 0

]
� 0

©Ahmad F. Taha Module 09 — Optimization, Optimal Control, and Model Predictive Control 6 / 32



Intro to Optimization Intro to Model Predictive Control Discrete LMPC Formulation Constrained MPC EMPC

Example — Cont’d

To solve the system equations for the optimal x∗, λ∗, µ∗, we first try
µ∗ > 0.
Given that, we solve the following set of equations:

1 2x∗1 − 2− λ∗ + µ∗ = 0
2 1 + λ∗ + µ∗ = 0
3 x∗1 + x∗2 − 2 = 0
4 x∗2 − x

∗
1 − 1 = 0

5 [⇒] x∗1 = 0.5, x∗2 = 1.5, λ∗ = −1, µ∗ = 0

But this solution contradicts the assumption that µ∗ > 0

Alternative: assume µ∗ = 0⇒ x∗1 = 0.5, x∗2 = 1.5, λ∗ = −1, µ∗ = 0

This solution satisfies g(x∗) ≤ 0 constraint, hence it’s a candidate for
being a minimizer

We now verify the SONC: L(x∗, λ∗, µ∗) =
[

2 0
0 0

]
� 0

Thus, x∗ =
[
0.5 1.5

]> is a strict local minimizer
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Optimization Solvers and Taxonomy

Figure from:
http://www.neos-guide.org/content/optimization-introduction
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Solvers

Solving optimization problems require few things
1 Modeling the problem

2 Translating the problem model (constraints and objectives) into a modeling
language (AMPL, GAMS, MATLAB, YALMIP, CVX)

3 Choosing optimization algorithms solvers (Simplex, Interior-Point,
Brand & Bound, Cutting Planes,...)

4 Specifying tolerance, exit flags, flexible constraints, bounds, ...

Convex optimization problems: use cvx (super easy to install and code)

MATLAB’s fmincon is always handy too (too much overhead, often fails
to converge for nonlinear optimization problems)

Visit http://www.neos-server.org/neos/solvers/index.html

Check http://www.neos-guide.org/ to learn more
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Introduction to MPC — Example1

What is Model-Predictive Control?

Compute first control action (for a
prediction horizon)

Apply first control action

Repeat given updated constraints

Essentially, solving optimization problems
sequentially

Use static-optimization techniques for
optimal control problems

Example: minimizing LapTime, while
NotKillingPeople

MPC ≡ Receding Horizon Control

1Some figures are borrowed from the references; see the end of the presentation file.
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MPC Schematic

MPC leverages constrained static-optimization for optimal control problems

MPC: real-time, sequential optimization with constraints on states and inputs2

2Some figures are borrowed from the references; see the end of the presentation file.
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MPC Applications + Time Horizons
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MPC Constraints

Most physical systems have constraints
1 Safety limits (minimum and maximum capacities)
2 Actuator limits
3 Overshoot constraints

MPC provides a great alternative to solving constrained optimal control
problems
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More on MPC

1 At each instant, an MPC uses: current inputs, outputs, states

2 Using these signals, MPC computes (over a prediction horizon), a future
optimal control sequence

3 Solved online3 (explicit MPC, EMPC, is solved offline)

3Figures are borrowed from the references; see the end of the presentation file.
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Discrete LMPC Formulation

Linear MPC Problem

minimize
Ut

Np−1∑
k=0

J(xt+k, ut+k)

subject to x(t+ k + 1) = Ax(t+ k) +Bu(t+ k)
u ∈ U
x ∈ X
Ut = {ut, . . . , ut+Np−1}
x(t) = xt (fixed)

At each time-instant:
1 Measure or estimate x(t)
2 Find optimal input sequence the PredictionHorizon (Np)

U∗t = {ut, . . . , u
∗
t+Np−1}

3 Implement first control action, u∗t
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Linear Discrete-Time MPC

Objective is to apply MPC for this LTI DT system:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k), x ∈ Rn, u ∈ Rm, y ∈ Rp

Define ∆x(k + 1) = x(k + 1)− x(k) = A∆x(k) +B∆u(k)

∆y(k + 1) = y(k + 1)− y(k) = C∆x(k + 1) = CA∆x(k) + CB∆u(k)

Hence: y(k + 1) = y(k) + CA∆x(k) + CB∆u(k)

Combining the boxed equations, we get:[
∆x(k + 1)
y(k + 1)

]
︸ ︷︷ ︸

xa(k+1)

=
[
A 0
CA Ip

]
︸ ︷︷ ︸

Φa

[
∆x(k)
y(k)

]
︸ ︷︷ ︸

xa(k)

+
[
B
CB

]
︸ ︷︷ ︸

Γa

∆u(k) (1)

y(k) =
[
O Ip

]︸ ︷︷ ︸
Ca

[
∆x(k)
y(k)

]
(2)
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MPC Problem Construction

xa(k + 1) = Φaxa(k) + Γa∆u(k)
y(k) = Caxa(k), xa ∈ Rn+p,Γa ∈ Rn+p×m, Ca ∈ Rp×n+p

Assume u(k) and x(k) are available, we can get x(k + 1)

Hence, xa is known at k

Control objective: construct control sequence

∆u(k),∆u(k + 1), . . . ,∆u(k +Np − 1), Np = PredictionHorizon

This sequence will give us the predicted state vectors

{xa(k + 1|k), . . . , xa(k +Np|k) } ⇒ { y(k + 1|k), . . . y(k +Np|k) }

©Ahmad F. Taha Module 09 — Optimization, Optimal Control, and Model Predictive Control 17 / 32



Intro to Optimization Intro to Model Predictive Control Discrete LMPC Formulation Constrained MPC EMPC

MPC Construction

How can we construct u(k) given x(k)? Seems like a least-square problem
We can write the predicted future state variables as:

xa(k + 1|k) = Φaxa(k) + Γa∆u(k)

xa(k + 2|k) = Φaxa(k + 1|k) + Γa∆u(k + 1) = Φ2
axa(k) + ΦaΓa∆u(k) + Γa∆u(k + 1)

. . . = . . .

xa(k + Np|k) = ΦNp
a xa(k) + ΦNp−1

a Γa∆u(k) + . . . + Γa∆u(k + Np − 1)

Also, we can write the predicted outputs as:

Ca

 xa(k + 1|k)
xa(k + 2|k)

...
xa(k + Np|k)


︸ ︷︷ ︸

Y

= Ca


Φa

Φ2
a

...
ΦNp

a


︸ ︷︷ ︸

W

xa(k)+Ca

 Γa
ΦaΓa Γa

...
. . .

ΦNp−1
a Γa . . . ΦaΓa Γa


︸ ︷︷ ︸

Z

 ∆u(k)
∆u(k + 1)

...
∆u(k + Np − 1)


︸ ︷︷ ︸

∆U

Hence, we obtain:

Y =
[
y>(k + 1|k) y>(k + 2|k) . . . y>(k +Np|k)

]> = Wxa(k) + Z∆U

Note: all variables written in terms of current state and future control
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Optimal MPC Construction

Y =
[
y>(k + 1|k) y>(k + 2|k) . . . y>(k +Np|k)

]> = Wxa(k) + Z∆U

Y,W,Z, xa all given ⇒ determine ∆U (or ∆u(k), . . . ,∆u(k +Np − 1))

Assume that we want to minimize this cost function:

J(∆U) = 1
2(r − Y )>Q(r − Y ) + 1

2∆U>R∆U, Q = Q> � 0, R = RT � 0

Cost function = min deviations from output set-points + control actions

This is an unconstrained optimization problem ⇒ it’s easy to find ∆U∗

Setting ∂J

∂∆U = 0⇒ ∆U∗ = (R+ Z>QZ)−1Z>Q(r −Wxa)

Note that SONC are satisfied as ∂2J

∂∆U2 = R+ Z>QZ � 0
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Optimal MPC Construction — 2

Now, we need to compute ∆u(k) (recall ∆U,∆u(k)):
∆u(k) =

[
Im O . . . O

]
∆U

=
[
Im O . . . O

]
(R+ Z>QZ)−1Z>Q(r −Wxa)

Above equation can be written as:
∆u(k) = Krr −KrWxa(k), where:

Kr =
[
Im O . . . O

]
(R+ Z>QZ)−1Z>Q

Recall that xa(k) =
[

∆x(k)
y(k)

]
⇒ above equation can be written as:

∆u(k) = Krr −Kmpc∆x(k)−Kyy(k)
∆u(k) = Krr −Kyy(k)︸ ︷︷ ︸

reference signals

− Kmpc∆x(k)︸ ︷︷ ︸
state-feedback gain

, where:

Kr =
[
Im O . . . O

]
(R+ Z>QZ)−1Z>Q

Kmpc = KrW

[
In

O

]
, Ky = KrW

[
O
Ip

]
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Solving Unconstrained MPC Problems, An Algorithm

1 Given CT LTI system, discretize your system (on MATLAB: c2d)

2 Specify your prediction horizon Np

3 Find augmented dynamics:

xa(k + 1) = Φaxa(k) + Γa∆u(k)
y(k) = Caxa(k)

4 Compute W,Z and formulate predicted output equation:

Y = Wxa(k) + Z∆U

5 Assign reference signals and weights on control action—formulate J(∆U)

6 Compute optimal control ∆U , extract ∆u(k) and u(k)
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LMPC Example

Consider this LTI, DT dynamical system, give by:

A =
[

1 1
0 1

]
, B =

[
0.5
1

]
, C =

[
1 0

]
, Np = 10

Apply the algorithm:
1 Augmented dynamics:

Φa =

[
1 1 0
0 1 0
1 1 1

]
,Γa =

[
0.5
1
0

]
, Ca =

[
0 0 1

]
⇒

2 Find Z,W :

Z =


0.5 0 0 0 0 0 0 0 0 0
2 0.5 0 0 0 0 0 0 0 0

4.5 2 0.5 0 0 0 0 0 0 0
8 4.5 2 0.5 0 0 0 0 0 0

12.5 8 4.5 2 0.5 0 0 0 0 0
18 12.5 8 4.5 2 0.5 0 0 0 0

24.5 18 12.5 8 4.5 2 0.5 0 0 0
32 24.5 18 12.5 8 4.5 2 0.5 0 0

40.5 32 24.5 18 12.5 8 4.5 2 0.5 0
50 40.5 32 24.5 18 12.5 8 4.5 2 0.5

 ,W =


1 1 1
2 3 1
3 6 1
4 10 1
5 15 1
6 21 1
7 28 1
8 36 1
9 45 1
10 55 1


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Example

Select an output reference signal (r = 2) and weight on control (R = 0.1I)

Solve for the optimal ∆U and extract ∆u(k), u(k)

Apply the first control and generate states and dynamics

Plots show optimal control with R = 0.1I (left) and R = 10I (right)

Putting more weight on control action is reflected in the left figure

Sampling Instant
1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

Output

Sampling Instant
1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

1.5

Control

Sampling Instant
1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

Output

Sampling Instant
1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Control

©Ahmad F. Taha Module 09 — Optimization, Optimal Control, and Model Predictive Control 23 / 32



Intro to Optimization Intro to Model Predictive Control Discrete LMPC Formulation Constrained MPC EMPC

MPC With Constraints on ∆u(k)

Previously, we assumed no constraints on states or control

What if the rate of change of the control, ∆u(k), is bounded?

Solution: if ∆umin ≤ ∆u(k) ≤ ∆umax, then:[
−Im

Im

]
∆u(k) ≤

[
−∆umin

∆umax

]
For a prediction horizon Np, we have:

−Im O . . . O O
Im O . . . O O
O −Im . . . O O
O Im . . . O O
...

...
O O . . . O −Im

O O . . . O Im




∆u(k)

∆u(k + 1)
...

∆u(k +Np − 1)


︸ ︷︷ ︸

∆U

≤



−∆umin

∆umax

−∆umin

∆umax

...
−∆umin

∆umax


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MPC With Constraints on u(k)

What if the control, u(k), is bounded?

Solution: We know that:

u(k) = u(k − 1) + ∆u(k) = u(k − 1) +
[
Im O . . . O

]
∆U(k)

Similarly:

u(k+1) = u(k)+∆u(k+1) = u(k−1)+
[
Im Im O . . . O

]
∆U(k)

Or:
u(k)

u(k + 1)
...

u(k +Np − 1)

 =


Im

Im

...
Im

u(k−1)+


Im

Im Im

...
...

. . .
Im Im . . . Im




∆u(k)
∆u(k + 1)

...
∆u(k +Np − 1)


Therefore, we can write:

U(k) = Eu(k − 1) +H∆U(k)
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MPC With Control Constraints

Suppose that we have the following constraints:
umin ≤ U(k) ≤ umax

We can represent the above constraints as:[
−U(k)
U(k)

]
≤
[
−umin

umax

]
Recall that

U(k) = Eu(k − 1) +H∆U(k)

Since u(k − 1) is know, we obtain an Ax ≤ b-like inequality:[
−H
H

]
∆U(k) ≤

[
−umin + Eu(k − 1)
umax − Eu(k − 1)

]
Input-Constrained MPC—a quadratic program:

minimize J(∆U) = 1
2(r − Y )>Q(r − Y ) + 1

2∆U>R∆U

subject to
[
−H
H

]
∆U(k) ≤

[
−umin + Eu(k − 1)
umax − Eu(k − 1)

]
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MPC With Output Constraints

Suppose that we require the output to be bounded:

ymin ≤ Y (k) ≤ ymax

Hence, we can write: [
−Y (k)
Y (k)

]
≤
[
−ymin

ymax

]
Recall that Y (k) = Wxa(k) + Z∆U(k)

Similar to the input-constraints, we obtain:[
−Z
Z

]
∆U(k) ≤

[
−ymin +Wxa(k)
ymax −Wxa(k)

]
Output-Constrained MPC—a quadratic program:

minimize J(∆U) = 1
2(r − Y )>Q(r − Y ) + 1

2∆U>R∆U

subject to
[
−Z
Z

]
∆U(k) ≤

[
−ymin +Wxa(k)
ymax −Wxa(k)

]
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Constrained MPC as an Optimization Problem

As we saw in the previous 3–4 slides, MPC problem can be written as:

minimize J(∆U) (quadratic function)
subject to g(∆U) ≤ 0 (linear constraints)

Hence, we solve a constrained optimization problem (possibly convex) for
each time-horizon

Linear constraints can include constraints on: input, output, or rate of
change (or their combination)

Plethora of methods to solve such optimization problems

How about nonlinear constraints? Can be included too!
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MPC Pros and Cons

Pros:

Easy way of dealing with constraints on controls and states

High performance controllers, accurate

No need to generate solutions for the whole time-horizon

Flexibility: any model, any objective
Cons:

Main disadvantage: Online computations in real-time

Solving constrained optimization problem might be a daunting task

Might be stuck with an unfeasible solution

Robustness and stability
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Explicit MPC

Solving MPC online might be a problem for applications with fast
sampling time (< 1msec)

Solution: Explicit MPC (EMPC) — solving problems offline

Basic idea: offline computations to determine all operating regions

EMPC controllers require fewer run-time computations

To implement explicit MPC, first design a traditional MPC

Then, use this controller to generate an EMPC for use in real-time control

Check http://www.mathworks.com/help/mpc/explicit-mpc-design.
html?refresh=true
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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