Credit goes to Sebastian for his homework solutions.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO HOMEWORK # 3
EE 5143 Sebastian A. Nugroho
LINEAR SYSTEMS AND CONTROL September 18, 2017

The objective of this homework is to test your understanding of the content of Module 3. Due date
of the homework is: Sunday, September 17th @ 11:59pm. You have to upload a single PDF with your
clear solutions. Sloppy solutions will not be graded.

1. Determine which of the following sets are vector spaces. Prove your answer.

(a) The set of natural numbers.

(b) The set of square diagonal matrices.

(c) The set of (square) strictly upper diagonal matrices (4;; = 0 fori > j).

(d) The set of bounded sequences, i.e., {u[k],k =0,1,...,;|u(k)| < oo}.

(e) The set of bounded functions u(t) on a predefined interval, such that |u(t)| < K, where K is
a positive number.

Answer:

(a) The set of natural numbers IN is not a vector space since there exists x € IN such that for a

constant « € R where « < 0 we have ax ¢ IN.

(b) Suppose A and B are two square diagonal matrices. Then A + B is also a square diagonal
matrix. Moreover, for a constant « € R, #A is also a square diagonal matrix. Hence, the set
of square diagonal matrices is a vector space. Both justifications are illustrated as follows

e A+ Bisequal to

ap 0 ... 07 by O 0 a1+ by 0 0
0 a ... 0 0 by 0 0 a+b ... 0
Do . ST - : : . :
0 0 ... ay] 0 0 ... b, 0 0 . aytay
e xAisequal to
(aqy O ... O xa; 0 ... O
0 a ... 0 0 waap, ... O
(L3 . .= . . .
10 0 ... ay 0 0 ... aay

(c) The set of strictly upper diagonal matrices is a vector space because, for A and B that are two
strictly upper diagonal matrices, A + B is also a strictly upper diagonal matrix. In addition,
for a constant @« € IR, aA is also a strictly upper diagonal matrix. Both justifications are
illustrated as follows

e A+ Bisequal to

a1 dip ... diy bi1 byp ... by a1 +b11 ap+bp ... ay+bi
0 axp ... apy, N 0 by ... by B 0 y +by ... ay, + by
0 0 cee Aun 0 0 cee bnn 0 0 e ann+bnn

e xAisequal to

a1 ayp ... A1y xXaqp &kdip ... KAy
0 azxp ... Ay 0 Kdryy ... NKdoy

(44 =
0 0 ... aum 0 0 .. Kapn
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(d) Suppose uj(k) and u;(k) are two bounded sequences such that |u (k)| < Kj and |uy (k)| <
K;. Adding both sequences yields |uj (k) + ua(k)| < |ug(k)| + |ua(k)| < K3 + Ky < oo.
Moreover, for a constant &« € R, we have a|uq(k)| < aK; < oo. Hence, the set of bounded
sequences is a vector space.

(e) Suppose u1 (k) and u;(k) are two bounded functions such that |u; (k)| < Kand |up (k)| < K.
Then adding both functions yields |uj (k) + uy (k)| < |uq (k)| + |uz(k)| < 2K. This shows that
any u(k) where u(k) = uj (k) + uy (k) has the property of u(k) < 2K, showing that the set of
bounded functions on a predefined interval is not a vector space.

. 2a b 2%29
2. Is the set S of all matrices of the form 304 b 3b] a subspace of R“*~?

Answer: Yes. The reasons are three folds:

(a) The zero matrix in IR>*2 can be expressed by setting a = 0 and b = 0.

(b) For two matrices, we have

2a1 b 2a; by | 2(a1 + ap) b1+ by
3a1+b1 3bq 3as +by 3by|  |3(a1+ax)+ (b1 +by) 3(bi+b)|’

which the right-hand side is in S.

(c) For a constant « € R, we have
N 2a bl 2ua ab
3a+b 3b|  |3aa+ab 3ab|’

which the right-hand side is in S.

a
Answer: Suppose v1, v; € S, then

a+2b
3. IsS = a+1|;abeR; asubspace of R3?

ay +2b ap + 2bp (a1 +a2) +2(by + b2)
v+v=|a+1 |+ | a+l|= (m+ay)+2
a az (a1 +az)

Since it is apparent that v; + v € S, then S is not a subspace.
4. Find the null space, range space, determinant, and rank of the following matrices:

1 2 3 4 1 0 -1 2
,B=|0 -1 -2 2(,C=12 1 2 3|.

1 2 3
A=14 5 6
7 8 9 0 0 0 1 -1 0 1 =2

Confirm your answers on MATLAB. Show your code.
Answer:

(a) The reduced row echelon of A is

1 2 3 1 2 3 1 2 3 1 0 -1
4 5 6{—-1]|0 -3 -6(—-1(0 -3 —6|—=|(0 -3 -6/,
7 8 9 0 -6 -—-12 0 O 0 0 O 0

whereas its reduced column echelon is

1 2 3 1 0 0 1 0 O 1 0 O
4 5 6| >4 -3 —6|—(4 -3 —- 10 =3 0f.
7 8 9 7 —6 —12 7 —6 0 -1 -6 0



e The nullspace of A is the solution of the following equations

2 A-8-[5

From the above, we have a = c and b = —2c. Hence the nullspace of A is

c 1
Null(A) = | —2¢c| =c |-2],
c 1
forc € R.
e From the reduced column echelon form of A, the range of A can immediately be ob-
tained as
1 0 1 0 1 N
Range(A)=a |0 | +b|-3| =a| 0| +-3b|1| =a| 0 |+0b ,
-1 —6 -1 2 -1 2
fora,b € R.

e Determinant of A can be computed as
Det(A) = 1(45 —48) —2(36 —42) +3(32-35) = —3+12—-9 = 0.

e The number of nonzero rows on the reduced row echelon form of A is 2, hence Rank(A) =
2.

(b) The reduced row echelon of B is

1 2 3 4 1 2 3 41 1 0 -1 O
o -1 -2 2|—=+1J01 2 -2—=10 1 2 =2|,
0 0 0 1 0 00 1] 0 0 O 1

whereas its reduced column echelon is

1 2 3 4 10 0 0 1 0 0 0 1000
o -1 -2 2(—1|2 -2 15 -05({—|-1 1 0 0l =10 1 0 0].
0O 0 0 1 4 -2 -3 -1 -8 4 1 0 0 010
o The nullspace of B is the solution of the following equations
10 -1 0 Z 0 a—c 0
012—2C:0<:>b+2020.
00 O 1 0 d 0
d
From the above, we have a = ¢, b = —2c¢, and d = 0. Hence the nullspace of B is
c 1
—2c -2
Null(B) = cl=clq |
0 0
forc € R.
e From the reduced column echelon form of B, the range of B can immediately be obtained
as
1 0 0
Range(B) =a |0 +b [1| +c |0},
0 0 1

for a,b,c € R. This shows that B spans R3.
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e The number of nonzero rows on the reduced row echelon form of B corresponds to the

rank of B, that is Rank(B) = 3.
(c) The reduced row echelon of C is

1 0 -1
2 1 2
-1 0 1

whereas its reduced column echelon is

2 1
31 —=10
-2 0

1 0 -1 2 1 00 O 1 0 0 0] 1 00 0
21 2 3|—=1(2 14 -1|—-|2 100 —=]0 10 0].
-1 0 1 =2 -1 00 0 -1 0 0 0] -1 0 00
o The nullspace of C is the solution of the following equations
1o -1 271, o a—c+2d] [0
01 4 -1 C:O<:>b+4c—d:O.
00 0 O 0 0 0
d
From the above, we have a = ¢ — 2d and b = —4c + d. Hence the nullspace of C is
c—2d 1 -2
Null(€) = | T e | T | ]
d 0

forc,d € R.

e From the reduced column echelon form of C, range C can immediately be obtained as

1 0
Range(C) =a { 0 } +0b [1} ,
-1 0

e The number of nonzero rows on the reduced row echelon form of C corresponds to the

fora,b € R.

rank of C, that is Rank(C) = 2.
The MATLAB code for this problem is

clear all
clc

A = sym([1,2,3;4,5,6;7,8,9]);

disp(’Null(A):’)
null(A)
disp(’Range(A):?)
colspace(A)
disp(’Det(A):’)
det (A)
disp(’Rank(A):’)
rank (A)

B = sym([1,2,3,4;0,-1,-2,2;0,0,0,11);
disp(’Null(B):’)

null(B)



disp(’Range(B):’)
colspace(B)
disp(’Rank(B):’)
rank (B)

C = Sym([130,_1:2;2’1:2)3;_1)0:1,_2]);

disp(’Null(C):?)

null(C)
disp(’Range(C):’)
colspace(C)
disp(’Rank(C):’)
rank(C)

while the corresponding output is

Null(A):

Rank (A) :

ans =

Null(B):

Range (B) :

ans =



(1, 0, O]
[0, 1, 0]
Lo, 0, 1]

[ 1, 0]
[ o, 1]
[ -1, 0]

Rank (C) :
ans =
2

. Assume that A = TDT~!, where D is the diagonal matrix.

(a) Prove by mathematical induction that Ak = TDFT1,
(b) Prove that eAt = TeP!T—1,

Answer:

(a) Since A! = TD!T~! = TDT~! = A, then we just need to prove that the claim holds for
k+1. Because T~ 1T = I, then
AFA = (TDFTY)(TDT™1)
A = DT ITDT !
A = TDFIDT!
Ak+l _ TDkDTfl
Ak — ppk+ip-1



(b) From the definition of matrix exponential by Taylor series, we have

B
eM =1+ TDT 't + (Tm;)ztz N (TD7;1)3t3 .

A= T4 T(DHT 1 + (TDT*l)S"DTfl)f2 N (TDT*l)(TD;’l)(TDTfl)F’ .
M =TT+ T(DHT ' + T(Dzi)Tl N T(D?’;?)T*l L '

e = T(I+ Dt + % + D;t3 T

eAt —_ TeDt T*l

6. For the following dynamical system:
. 0 0 1
x(t) = {2 0} x(t) + [0] u(t),

compute x(0) when u(t) =0and x(2) = [1 0] T
Answer: Suppose that the above system represents the dynamic equation of the form x(t) =
Ax(t) + Bu(t). Then, we should realize that the matrix A is indeed nilpotent for k = 2, because

> |0 0]f0 O] [0 O
=505 8= o
is simply

A 1 o], fo o], [1 0
e —I—O—At—[o 1]4—{2 Ot— o 1]

Then the expression /!

The solution of the above system with zero input is

Att =2, we have

] = [ 3] [0
o] = 1+ 2 [560)
{(1)_ - _4x1(g)l$ )xQ(O)] :

From the above, we get x1(0) = 1 and x,(0) = —4. Thus, x(0) = [1 —4] T

7. For the same dynamical system in the previous problem, find x(0) when u(¢) = 1 and x(2) is the
zero vector.



Answer: The solution of the above system with nonzero input is

x(t) = eAx(0) + /0 A=) By () dr
)=l 1) [0+ et 1) o] e
| s K A A
o) = e 3] (o)) 4]

Substituting ¢ = 2 to the above yields

{8] = [4x1(())()1g(—))xz(0)} + Lz; = [4x1((3)c)1g(-))x;_(§) +4]'

From the above, we get x1(0) = —2 and x,(0) = 4. Thus, x(0) = [-2 4] T

Aq

8. You are given that A = [ 0 A

] where A; is a square matrix of dimension 7, and A is a square
matrix of dimension 2.

(a) Find e?! in the simplest possible form.

Hint: If A, B are two matrices that commute, then e(ATB) = 4B Uge this hint after writing
A as the sum of two matrices.

1 2 ja 1] (1 —2] . At
(b) Assume now that A; = [0 1} {0 OJ [O 1 ].Fmde .

Answer:

(a) Matrix A must be decomposed such that its resulting matrices are commute. Realize that

A=X+Y= [Al 0]+{0 I}

0 A Tlo o
——
X Y
where
A 070 11 [0 A
XY_[O A1H0 0}_[0 0}
o 1A 0] [0 A
YX_[O oHo Al]_{o 0}'
Since

e[k 0B

vy g gl 1)

then we have

00 0 I

Finally, e can now be expressed as

PAt — Xt Yt
At Xt I It _ A1 0
et =e [0 I}’ whereX—{0 Al or

ar et 0 [T 1t
Tl o eMt|lo I

At gAlt teAlf
e = 0 eAlt .
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(b) Since

then

=l i b

eAlt_—l 2] [ed te*] [1 -2
“lo 1o e |o 1

oAt _ [e*t  (t+2)e*] [1 -2
10 et 0 1
'ezxt te"‘t
et = 0 e"‘t] .

Substituting the above into the previous result yields

eat teuct tetxt tZEat
At 0 e 0t
e = at t
0 0 e te
0 0 0 e

9. A dynamical system is governed by the following state space dynamics:

(a) Find eAlt—to),
(b) Giventhatx(1)=[1 1 1
(c) Whatis x(5)?

0 00 1
x(t) = [2 0 Of x(t)+ |0] u(t).
0 6 0 0

]T, compute x(t) for t > 1.

(d) Now assume that x(1) = 0, and the control input is u(t) = 1. Find the initial condition
x(0) that would lead to x(1). In other words, assume that your initial condition is now x(0),
which you're required to find given that the control drives the system back to zero.

(e) Confirm your answers on MATLAB. Show your code.

Answer:

(a) Since A is nilpotent for k = 3, or A% = 0, then

_ A2(t —t)?
eA(t to) — I+A(t—to)+ (2' )
1 0 0 0 0 0 0 00
A=) = 10 1 0| + [2(t—tp) 0 o += 0 00
0 0 1 0 6(t—tg) O 12(t—t)> 0 0
(1 0 0
eAlt=to) — | 2(t — tg) 1 0f.
6(t—tg)> 6(t—tg) 1
(b) If the system starts at = 1 with x(1) = [1 1 1]T, then

t
x(t) = At Vx(1) +/1 AT Bu(t)dr

1 o 0]t , 1 0 0] 1
206-1) 1 o] H +/ [2(1&—7) 1 o] H u(t)dt
6(t—1)2 6(t—1) 1] |1 Vle(t—1)2 6(t—1) 1] [0

1 , 1
“),
1

2t—1 2(t—1) | u(t)dr, Vt>1.
61> — 6t +1 6(t—1)2

9



1 t—1 t
x(H)=| 2t—-1 |+ |[#-1|= 242t —2 , V> 1.
612 — 6t + 1 213 -2 213 + 612 — 6t — 1
(c) To obtain x(5), putting t = 5 to the previous result yields
I 1 5 1
x(5)=| 2(5)-1 +/ 25— 1) | u(t)dr
16(5)2 —6(5) +1 b l6(5—1)?
(1 5 1
x(5)=| 9 +/ 10-2t | u(t)dr.
[121] 71 |150 — 607 + 72

If u(t) =1, then

(1] 5-1
x5)=19 [+ ] (5)?— 1]
121 [2(5)° -2

[ 1] [ 4
x(5)= |9 |+ |24
121|248

x(5)= {33 .
1369

(d) Assuming x(1) = [0 0 0]"
starts from t = 0 is

and u(t) = 0, the closed-form solution of the dynamics that

_ At L At-D g,
x(t)=e x(0)+/o Bu(t)dt
(1 0 0] 1 0 0] 1
x(t)=12t 1 0fx(0)+ 2(t—1 1 0] [0 (1)dt
61> 6t 1] O l6(t—1)2 6(t—1) 1] |0
0] [1 0 0] [x(0) ; 1
of = [2¢t 1 of |x(0) +/ 2(t— 1) | dt
0] |6t 6t 1] [x3(0) O l6(t—1)2
o] T 21(0) t
0| = 2tx1(0) + x2(0) + |2t -1
0] |6t2x1(0) + 6tx2(0) + x3(0) 213

Substituting t = 1, we get

H [ x1(0)
of = 2x1(0) + x2(0)
0 6x1(0) + 6x2(0) + x3(0)

‘)

From the above we can infer that x1(0) = —1, x2(0) = 3, and x3(0) = —10. Hence, x(0) =
T
-1 3 —10]".

10. Find e for the following matrices. The expression you obtain should be a closed form one.

@) A= {Z :ﬂ,méo
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a b c
b) A=|a b c|,a+b+c=0
a b c
a —a
@a=nls Tazo
Ay 10
d A=]0 A 1
0 0 A
You can confirm your answers on MATLAB. Show your code.
Answer:
(a) Since
a —al|la —a|l |0 O
a —al|l|la —a| |0 0|’
then
M =T+ At
Aa |10 a —a
=l 1l Sl
At 1+4+at —at
| oat 1—at|”
(b) We have

a?+ab+ac ab+b*+bc ac+ be+ c?
a2 +ab+ac ab+b%>+bc ac+bec+ 2

a a0
ESTEERNTENY

a b b ¢ a2 +ab+ac ab+b%>+bc ac+bc+ c?
a b b c| =
a b b ¢

Substituting ¢ = —a — b to the above yields

a’>+ab+a(—a—b) ab+b*+b(—a—b) a(—a—b)+b(—a—b)+(—a—b)?

[az—i-ab—i-a(—a—b) ab+b?>+b(—a—b) a(—a—"b)+b(—a—>b)+ (—a—0b)?
a®>+ab+a(—a—b) ab+b*+b(—a—b) a(—a—0b)+b(—a—b)+(—a—b)?

The matrix exponential can now be computed as

A =T+ At
1 0 0] (a b ¢
=101 0| +1]a b c|t
10 0 1] |a b ¢
[1 0 O] [at bt ct
eA=10 1 0| + |at bt ct
10 0 1] | at bt ct
[1+at bt ct
A= | at  1+bt
| at bt 1+4ct
[1+at bt (—a—Db)t
A= at  1+bt (—a—Db)t
| at bt 14+ (—a—Db)t
[1+at bt —at — bt
eM=1| at 1+bt —at—bt|.
| at bt 1—at—bt

11



o (ule D) =) =6 o]

eM =1+ At

o 0l )

eAt . 1+ )\1[11’ —Alat
o /\117lf 1- Alat ’

then

(d) Because the matrix is already in a Jordan canonical form, then we simply follow the rules of
constructing matrix exponential of Jordan canonical from. That is

e
eM=10 oMttt

0 0 eMt

Aqt te/\] t %tze/\] t

The MATLAB code for all above subproblems are

clear all
clc

syms a b ¢ 1bdl t
A = [a -a; a -a]

disp(’e”(At):?)
expm(A*t)

[abc; abc; abc]
-a-b
subs (A)

c
A

disp(’e”~(At):’)
expm(A*t)

A = 1bdix[a -a; a -al

disp(’e~(At):’)
expm(A*t)

A = [1bdl 1 0; O 1bdl 1; O O 1bdi]

disp(’e”~(At):’)
expm(A*t)

and the corresponding results are

A =

[ a, -a]
[ a, -a]
e~ (At):

12



ans =

[ axt + 1, —axt]

[ axt, 1 - axt]

A =

[ a, b, c]

[ a, b, c]

[ a, b, c]

C=

-a-b

A =

[ a, b, -—a - bl

[asb’_a_b]

[a’b,_a_b]

e~ (At):

ans =

[ axt + 1, b*t, -t*x(a + b)]
[ axt, bxt + 1, -tx(a + b)]
[ a*t, bxt, 1 - b*t - axt]
A =

[ a*lbdl, -a*lbdi]
[ a*lbdl, -a*lbdi]

e” (At):

ans =

[ axlbdixt + 1, —a*x1bd1lxt]
[ a*xlbdixt, 1 - axlbdilxt]
A:

[ 1bdil, 1, 0]
[ 0, 1bdi, 1]
[ 0, 0, 1bdi]
e~ (At):

ans =
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[ exp(1bdix*t), t*xexp(lbdil*t), (t~2*exp(lbdilxt))/2]
[ 0, exp(lbdix*t), t*xexp(1lbdix*t)]
[ 0, 0, exp(1lbdi*t)]

. A dynamical system is governed by the following state space dynamics:

a b ¢
x(t) = ([a b c] +A13) x(t) +
a b ¢

where a4+ b+ ¢ = 0. Find x(0) if u(t) = 2eM,Vt > 0,and x(2) = [1 1 1]'
Answer: To solve this problem, the first step is to determine ¢“!. Realize that

1
1
1

u(t),

a b ¢ A0 O
A=X+Y=1la b c|+ |0 A 0f,
a b c 0 0 A
X Y

where the matrix pair (X, Y) is commute, because

[a b c] [A 0 0] [Aa Ab  Ac]
XY=1la b c| |0 A 0| =|Aa Ab Ac
la b c] |0 0 Aj [Aa Ab Ac)
(A 0 0 b c] [Aa Ab  Ac]
YX=10 A O b c¢c|=1|Aa Ab Ac
0 0 A] [a b cf [Aa Ab Ac)

Based on the commutative relation of (X,Y), the fact that a + b + ¢ = 0, and the results from
Problem 10, e! can be obtained as

oAt — Xt Yt
[1+at bt —at — bt
eM=| at 1+bt —at—bt
| at bt 1—at—Dbt f
[(1 4 at)eM bteM (—at —
et = ateM (1+bt)eM  (—at — )
| ateM bteM (1 —at — bt)e*

14



12.

The solution of the above system is computed as follows

x(t) = e?x(0 —|—/ A=) By (1

(1+at)e? bteM
x(t) = ateM (1 + bt)eM at - bt
ate At bte/\t
1+ﬂ t— T)) A= T) b(t —T)etT) (—a(t— 1) —b(t — 1))t=0 7 1
/) N0 (@b mmet-0 (et —aie— oo | 1] @enar
eME=T) b(t—r)e A(t=1) (1—a(t—1)—b(t—1))ert-D] |1
[(1+ at) bt A (—at — bt) ; [2e
x(t) = ateM (1+0bt)eM  (—at —bt)eM x(O) + / 2eM | dT
| ateM bteM (1 —at — bt)et 0 | et
[(1+ at)eM bte (—at — bt)eM ] 2reM] !
x(t) = ateM (1+bt)eM  (—at —bt)e! x(O) + |27eM
| ateM bte (1—at— bt) 2teM ||,
[(1+ at)eM bte (—at — bt)eM ] 2teM
x(t) = ateM (1+0bt)eM  (—at —bt)eM | x(0) + |2teM ] .
| ateM bteM (1 — at — bt)eM 2teM
Substitutingt =2and x(2) = [1 1 1] T yields
1] [(1+2a)e*  2be* (—=2a —2b)e** 7 [x1(0) 4e?!
1| =] 2ae®  (142b)e* (-2a—2b)e** | [x2(0)| + |4e*
1] | 2ae*) 2be*? (1 —2a —2b)e**| | x3(0) 4e2t
17 [(1+ 2&1)6 Ax1(0) + Zbez)‘xz(O) + (—2a — 2b)e* x3(0) + 4%
1| = |2ae®*x1(0) + (1 + 2b)e* x2(0) + (—2a — 2b)e** x3(0) + 4e**
1] | 2ae2/\x (0) +2be*}x,(0) + (1 — 2a — 2b)e**x3(0) + 4e**

such that

Prove the following results:

[0 a At | cos(at)  sin(at
() It A = O}Jhene - [— sin(at) cos(at

@)
[0 b At |cosh(bt) sinh(bt)
(b) 1A =1, o} thene [smh bt) cosh bt ]

@rtta= [y gl wenet=er [ i)

Answer:
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(a) From the definition of ¢4 in the form of Taylor series, we have

a2 (A A%2 A3 A
e _Zé T A e e e
i=
1 0 0 at] [ 1[-a? 0 1[0 = 1[a* 0
At _ 2 —- il
“ = o 1} * [—at 0} o [ 0 —a2t2} HE [a3t3 0 }+4! [ 0 a4t4} T
Al 1— Ja? t2—|—4,a4t4+ at — 3a3t + ...
—at + 3a%8 — 1— Ja?t? + fa*tt 4 ...
At [ cos(at) sm(at)
| —sin(at) cos(at)]’
|
(b) From the definition of 2! in the form of Taylor series, we have
A o (A A% AP At
e _Z(;) T T I HAE S e e
im
1 0] [0 o]  1[p* 0 1o 8] 1 0
At _ - —- il
“=1lo 1} + [bt o} o [ 0 b2t2} S [b3t3 0 }J“zu [ 0 b4t4} te
At [T+ 2024+ Lot 4 bt+ 16383 +
Tl b+ PP 1+2,b2t2+ 1yt ¢
oAt _ [cosh(at) sinh(at)
~ |sinh(at) cosh(at)|"
|
(c) Realize that
0 0 b
—— ——
X Y
where the matrix pair (X, Y) is commute, because
a 0|0 b 0 ab
=5 o |5 o) =la 0]
0 blja O 0 ab
=15 ol o =m0
Then, the following applies
PAt — Xt Yt
At e 071 cos(bt) sin(bt)
T |0 e™| |—sin(bt) cos(bt)
A e cos(bt) e’ sin(bt)
| —esin(bt) e cos(bt)
QAL _ gt cos(bt)  sin(bt)
- — sin( bt cos(bt
]
1 2 0
13. Find the generalized eigenvectors for the matrix A = |1 1 2|, the Jordan canonical form, as
0 -1 1

well as the matrix exponential e/
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Answer: First, we need to find the eigenvalue of A. That is

Det(A —AI) =0
1 2 0 A 0 0]
Det(llZ—Ox\O)-O
0 -1 1 0 0 A
1-A 2 0 ]
Det( 1 1—-A 2 ):0.
0 -1 1-A]

From the above, we get (1 — A)3 = 0, which gives A = 1. The eigenvector is

0 2 0 vi 0 1
1 0 2| || =10, & v1=c| 0 |, ceR
0 -1 0] [« 0 -0.5

Since the eigenvector of A spans one column vector, there is only one Jordan block, which is of
the form

1 1 0

011 = o= :

0 0 1

Then, to find the other two eigenvectors, we do the following calculations

¢ 12t
tet
ot

e
0

0 0

1] o 2 0] [0} (2]
—-05] [0 -1 0] |03 |1 ]
27 [o 2 0] [0 0.5
0.5:1020§,:>v3:1,
1] [0 -1 0] |03 | 0|
hence, we have
1 2 05 05333 —0.2667 —0.9333
T=| 0 05 1| where T-!=]02667 —0.1333 0.5333 |.
-05 1 0 —0.1333 10667 —0.2667
Finally, e can be computed as follows
e =Tel' T
1 2 05] [el tet L% [ 05333 —0.2667 —0.9333
eAM=10 05 1[]0 e te 0.2667 —0.1333  0.5333
-05 1 0|0 0 ¢ | [-01333 1.0667 —0.2667
[ et (t+2)et  T(2+4t+1)e!] [ 05333 —0.2667 —0.9333
eM=1 0 et L(t+2)et 0.2667 —0.1333  0.5333
—Let —1(t—2)et  —L(t—4)et | |-01333 1.0667 —0.2667
— (2 —15)et (4t + 15)tet — 212t
e = — iste! 7= (8t +15)e! —Lte! :
| & (t—8)te!  — (4t —17)te! {=(t* —8t+15)e
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