N	am	e	:

The following system is given

$$\dot{x}(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t).$$

Can you find a state feedback gain $u(t) = -Kx(t) = -[k_1 \ k_2]x(t)$ such that the closed

loop system eigenvalues are $\lambda_{cl} = \{-1, -1\}$? Find K if that is possible. What if the desired closed loop system eigenvalues are $\lambda_{cl} = \{-1, 1\}$? Is that doable? If yes, find *K*.

Your Solution:

Your Solution: