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Chapter 1

Introduction

1.1 Optimization problems

1.1.1 The model

The mathematical programming model is of the form

p∗ := min
x

f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m. (1.1)

• x ∈ Rn is the decision variable

• f0 : Rn → R is the objective function

• fi : Rn → R, i = 1, . . . ,m represent the constraints

• p∗ is the optimal value

The term ”programming” (or ”program”) does not refer to a computer code. It
is used mainly for historical purposes. A more rigorous (but less popular) term
is ”optimization problem”. The term ”subject to” is often replaced by a colon.

The set

D = {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . ,m}

is called the feasible set. Any x ∈ D is called feasible (with respect to the specific
optimization problem at hand).

Sometimes, the model is described in terms of the feasible set, as follows:

min
x∈D

f0(x).

Also, sometimes a maximization problem is considered:

max
x∈D

f0(x).

Finally, it may be useful to distinguish between ”structure” constraints (such
as non-negativity constraints on variables) and constraints involving problem
data, with the notation

min
x∈X

f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m

where X ⊆ Rn describes the ”structure” constraints.
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1.1.2 Examples

• Least-squares problem:

min
x
‖Ax− b‖22

where A ∈ Rm×n, b ∈ Rm, and ‖ · ‖2 denotes the Euclidean norm.

This problem arises in many situations, for example in statistical estima-
tion problems such as linear regression. The problem dates back many
years, at least to Gauss (1777-1855), who solved it to predict the trajec-
tory of the planetoid Ceres.

• Linear programming problem:

min cTx : aTi x ≤ bi, i = 1, . . . ,m,

where c ∈ Rn, ai ∈ Rn, bi ∈ R (i = 1, . . . ,m). This corresponds to the
case where the functions fi (i = 0, . . . ,m) in (1.1) are all affine (that is,
linear plus a constant term).

This problem was introduced by Dantzig in the 40’s in the context of logis-
tical problems arising in military operations. This model of computation
is perhaps the most widely used optimization problem today.

• Quadratic programming problem:

min ‖x‖22 + cTx : aTi x ≤ bi, i = 1, . . . ,m,

which can be thought of as a generalization of both the least-squares and
linear programming problems.

QP’s are popular in many areas, such as finance, where the linear term
in the objective refers to the expected negative return on an investment,
and the squared term corresponds to the risk (or variance of the return).

This model was introduced by Markowitz (who was a student of Dantzig)
in the 50’s, to model investment problems. Markowitz won the Nobel prize
in Economics in 1990, mainly for this work.

1.1.3 Solution

The optimal set of problem (1.1) is defined as the set of feasible points x∗ such
that p∗ = f0(x∗):

Xopt := {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . ,m, p∗ = f0(x)} .

The ε-suboptimal set is defined as

Xε := {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . ,m, f0(x) ≤ p∗ + ε} .

(With our notation, X0 = Xopt.)

A point z is locally optimal if there is a value R > 0 such that z is optimal
for problem

min
x

f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m, ‖z − x‖2 ≤ R.

In other words, x minimizes f0, but only for nearby points on the feasible set.
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1.2 Convex optimization problems

1.2.1 Convexity

A set C is convex if it contains the line segments between any two of its points:

∀ x, y ∈ C, ∀ λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

A function f : Rn → R is convex if

∀ x, y ∈ Rn, ∀ λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

In other words, the graph of the function is always below the chord joining any
two points. That is, a function is convex if and only if its epigraph

epif :=
{

(x, t) ∈ Rn+1 : t ≥ f(x)
}

is convex. (Check this statement.)
The optimization problem (1.1) is convex if every function involved f0, f1, . . . , fm,

is convex.
The examples presented in section (1.1.2) are all convex. Examples of non-

convex problems include combinatorial optimization problems, where (some if
not all) variables are constrained to be boolean, or integers. (Such problems arise
for example when discrete choices are to be made, such as in crew asssignment
in the airline industry.)

1.2.2 Complexity

In this course, complexity of an optimization problem refers to the difficulty of
solving the problem on a computer. At this stage we do not define this notion
precisely.

The complexity of an optimization problem depends on its structure. Two
seemingly similar problem may require a widely different computational effort
to solve. Some problems are ”NP-hard”, which roughly means that they cannot
be solved in reasonable time on a computer.

As an example, the quadratic programming problem seen above is ”easy” to
solve, however the apparently similar problem

min cTx− ‖x‖22 : aTi x ≤ bi, i = 1, . . . ,m,

is NP-hard.
In the early days of optimization, it was thought that linearity was what

distinguished a hard problem from an easy one. Today, it appears that convexity
is the relevant notion. Roughly speaking, a convex problem is easy. In this
course, we will refine this statement.

1.2.3 A brief history of convex optimization

Theory:

• 19-th century: optimization models are used mostly in physics, with the
concept of energy as the objective function. No attempt (with the notable
exception of Gauss’ algorithm for least-squares) is made to actually solve
these problems numerically.

• 1900-70: a great effort in made in mathematics to build the theory of
optimization. The emphasis is on convex analysis, which allows to describe
the optimality conditions of a convex problem.
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Algorithms:

• 1947: simplex algorithm for linear programming (Dantzig).

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . ).

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984).

• late 1980s–now: polynomial-time interior-point methods for nonlinear con-
vex optimization (Nesterov & Nemirovski 1994).

Applications (of convex optimization):

• before 1990: mostly in operations research; few in engineering (except
least-squares); statistics is a big user of nonlinear optimization methods
such as Newton-Raphson.

• since 1990: many new applications in engineering (control, signal process-
ing, communications, circuit design, . . . ); new problem classes (semidefi-
nite and second-order cone programming, robust optimization)

1.3 Course objectives

The course will emphasize models, not algorithms. It will cover a specific class
of optimization models, based on the notion of convexity. We will briefly cover
some algorithms for solving convex problems. We will also study robust opti-
mization, which is a method to handle uncertainty in decision-making.



Chapter 2

Linear Algebra Review

2.1 Vectors

2.1.1 Basics

Independence. A set of vectors xi ∈ Rn, i = 1, . . . ,m is said to be indepen-
dent if and only if the following condition on a vector λ ∈ Rm:

m∑
i=1

λixi = 0

implies λ = 0. This means that no vector in the set can be expressed as a linear
combination of the others.

Subspace, span. A subspace of Rn is a subset that is closed under addition
and scalar multiplication. As an example, the span of a set of vectors xi ∈ Rn,
i = 1, . . . ,m is defined as

span(x1, . . . , xm) :=

{
m∑
i=1

λixi : λ ∈ Rm

}
.

Basis. A basis of Rn is a set of n independent vectors. The basis of a given
subspace L ⊆ Rn is any independent set of vectors whose span is L. The
number of vectors in the basis is actually independent of the choice of the
basis (for example, in R3 you need two independent vectors to describe a plane
containing the origin). This number is called the dimension of L.

2.1.2 Scalar product and norms

Scalar product. The scalar product (or, dot product) between two vectors
x, y ∈ Rn is defined as the scalar xT y =

∑n
i=1 xiyi. More generally, an inner

product on Rn is a bilinear function 〈·, ·〉 that satisfies the properties of sym-
metry (with respect to a swap in the two arguments), and positive-definiteness
(that is, 〈x, x〉 is always non-negative, and zero only when x = 0). An example
of an inner product is the weighted dot product

〈x, y〉σ :=

m∑
i=1

σ2
i xiyi, (2.1)

where σ ∈ Rn, σ 6= 0 is given.

11
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Vector norms. A function f : Rn → R is a norm on Rn if the following
three conditions are met:

1. f is convex.

2. f is positively homogeneous, meaning that f(αx) = αf(x) for every x ∈
Rn and α ∈ R+.

3. f is positive-definite: for every x ∈ Rn, f(x) = 0 implies x = 0.

Together, the first two conditions are equivalent to the triangle inequality:

∀ x, y ∈ Rn : f(x+ y) ≤ f(x) + f(y).

Often, norms are denoted ‖ · ‖.

Popular norms. There are three very popular norms for a vector x ∈ Rn:

• The Euclidean norm is ‖x‖2 :=
√∑n

i=1 x
2
i =
√
xTx, which corresponds to

the usual notion of distance in two or three dimensions.

• The l1-norm, or Manhattan distance, is ‖x‖1 =
∑n
i=1 |xi|. The norm

corresponds to the distance travelled on a rectangular grid (such as Man-
hattan) to go from one point to another.

• The l∞-norm is given by ‖x‖∞ := max1≤i≤n |xi|.

The lp-norm is a class that includes the previous ones (in an asymptotic sense
in the case of the l∞ norm), and is defined as

‖x‖p :=

(
p∑
i=1

|xi|p
)1/p

,

where p ≥ 1.

There are many other norms that are important or interesting in some ap-
plications. For example, for k ∈ {1, . . . , n} we can define

‖x‖1,k :=

k∑
i=1

|x|[i]

where for every i, |x|[i] is the i-th largest absolute value of elements of x. The
norm is a kind of mixture between the l1- and l∞-norms, respectively obtained
upon setting k = n and k = 1.

Finally, any scalar product 〈·, ·〉 generates a norm, defined as ‖x‖ :=
√
〈x, x〉.

For example, the Euclidean norm is generated by the ordinary scalar product.
Another example is the norm induced by the inner product defined in (2.1),
which is the weighted Euclidean norm

‖x‖ =

√√√√ n∑
i=1

σ2
i x

2
i .
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Cauchy-Schwartz inequalities, angles, dual norm. The Cauchy-Schwartz
inequality states that

∀ x, y ∈ Rn : xT y ≤ ‖x‖2 · ‖y‖2.

When none of the vectors involved is zero, we can define the corresponding angle
as θ such that

cos θ =
xT y

‖x‖2‖y‖2
.

(The notion generalizes the usual notion of angle between two directions in two
dimensions.)

Cauchy-Schwartz inequalities can be obtained for norms other than the Eu-
clidean. For example,

∀ x, y ∈ Rn : xT y ≤ ‖x‖∞ · ‖y‖1.

More generally, to any norm ‖ · ‖ we can associate a dual norm, usually denoted
‖ · ‖∗, and defined as

‖y‖∗ := max
x

xT y : ‖x‖ ≤ 1.

(Check this is indeed a norm.) By construction, the norm ‖ · ‖ and its dual
satisfy the (generalized) Cauchy-Schwartz inequality

∀ x, y ∈ Rn : xT y ≤ ‖x‖ · ‖y‖∗.

In this setting, the Euclidean norm is its own dual; and the l1- and l∞-norms
are dual of each other.

Orthogonal basis. A basis (ui)
n
i=1 is said to be orthogonal if uTi uj = 0 if

i 6= j. If in addition, ‖ui‖2 = 1, we say that the basis is orthonormal.

2.2 Matrices

2.2.1 Basics

Matrices (in say, Rm×n) can be viewed simply as a collection of vectors of same
size. Alternatively, a matrix can be see as a (linear) operator from the ”input”
space Rn to the ”output” space Rm. Both points of view are useful.

Transpose, trace and scalar product. The transpose of a matrix A is
denoted by AT , and is the matrix with (i, j) element Aji, i = 1, . . . ,m, j =
1, . . . , n.

The trace of a square n × n matrix A, denoted by TrA, is the sum of its
diagonal elements: TrA =

∑n
i=1Aii.

We can define the scalar product between two m× n matrices A,B via

〈A,B〉 = TrATB =

m∑
i=1

m∑
j=1

AijBij .

In this definition, both A,B are viewed as long vectors with all the columns
stacked on top of each other, and the scalar product is the ordinary scalar
product between the two vectors.
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Range, nullspace, rank. The range of a m × n matrix A is defined as the
following subset of Rm:

R(A) := {Ax : x ∈ Rn} .

The nullspace of A is given by

N (A) := {x ∈ Rn : Ax = 0} .

The rank of a matrix A is the dimension of its range; it is also the rank of
AT . Alternatively, it is equal to n minus the dimension of its nullspace. A
basic result of linear algebra states that any vector in Rn can be decomposed
as x = y+ z, with y ∈ N (A), z ∈ R(AT ), and z, y are orthogonal. (One way to
prove this is via the singular value decomposition, seen later.)

The notions of range, nullspace and rank are all based on viewing the matrix
as an operator.

Orthogonal matrices. A square, n×n matrix U = [u1, . . . , un] is orthogonal
if its columns form an orthonormal basis (note the unfortunate wording). The
condition uTi uj = 0 if i 6= j, and 1 otherwise, translates in matrix terms as
UTU = In with In the n× n identity matrix.

Orthogonal matrices are sometimes called rotations. Indeed, they do not
change the Euclidean norm of the input: for every x ∈ Rn, we have ‖Ux‖2 =
‖x‖2 (why?).

2.2.2 Matrix norms

There are many ways to define the norm of a matrix A ∈ Rm×n.

A first class of matrix norms, which can be called vector-based, can be derived
by simply collecting the elements of the matrix into a big vector, and defining
the matrix norm to be the norm of that vector. A popular choice in this class
is the Frobenius norm, which corresponds to the Euclidean norm of the vector
formed with its elements:

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

A2
ij .

Another class of matrix norm can be obtained as induced by a vector norm.
Specifically, let ‖ · ‖in, ‖ · ‖out be two vector norms defined on Rn and Rm,
respectively. Then we define the norm of a m× n matrix A as

‖A‖ := max
x
‖Ax‖out : ‖x‖in ≤ 1.

It turns out that the above indeed defines a matrix norm. This class of norms
views A not as a vector, but as a linear operator, and the norm measures the
maximum norm (measured with the output norm ‖ · ‖out) that the operator
can achieve with bounded inputs (with bounds measured via the “input” norm
‖ · ‖in).

One popular choice corresponds to the case when both input and output
norms are Euclidean. This norm is called the largest singular value norm, for
reasons visited later.

Some norms are both vector-based and induced. The Frobenius norm is not
induced; and the largest singular value norm is not vector-based.
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2.2.3 Matrix description of subspaces

Linear and affine subspace. A subspace in Rn can always be described as
the nullspace of a matrix A:

L = {x ∈ Rn : Ax = 0} .

The dimension of L is the rank of the matrix A. The subspace above is simply
the span of the columns of A.

A subset of the form

L = {x ∈ Rn : Ax = b} ,

with A ∈ Rm×n, b ∈ Rm, is referred to as an affine subspace.

Hyperplanes. A hyperplane in Rn is a set described by one affine constraint.
Hence, it is an affine subspace of dimension n − 1. It can be described by one
vector a ∈ Rn and one scalar b:

H =
{
x ∈ Rn : aTx = b

}
.

2.2.4 Singular value decomposition

The singular value decomposition states that any matrix A ∈ Rm×n can be
expressed as

A = U

(
Σ 0
0 0

)
V T ,

with U ∈ Rm×m, V ∈ Rn×n, U, V orthogonal, and Σ = diag(σ1, . . . , σr)
contain the singular values of A. The number r ≤ min(m,n) is the rank of A,
and equals the dimension of its range.

The largest singular value of A can be characterized as

σmax(A) = max
1≤i≤r

σi = max
x
‖Ax‖2 : ‖x‖2 = 1.

(Try to prove this.) As mentioned before, the largest singular value is a matrix
norm.

Due to the orthogonality of the matrices U, V , the SVD is especially useful
in connection with the Euclidean norm, or to analyze linear equations (we can
extract information about rank, nullspace and range from the SVD).

2.3 Symmetric Matrices

2.3.1 Definition and examples

Definition. A square matrix A ∈ Rn×n is symmetric if and only if A = AT .
The set of symmetric n× n matrices is denoted Sn.

Examples. Perhaps the simplest example of symmetric matrices is the class
of diagonal matrices, which are non-zero only on their diagonal. If λ ∈ Rn,
we denote by diag(λ1, . . . , λn), or diag(λ) for short, the n × n (symmetric)
diagonal matrix with λ on its diagonal.

Another important case of a symmetric matrix is of the form uuT , where
u ∈ Rn. The matrix has elements uiuj , and is symmetric. Such matrices are
called dyads. If ‖u‖2 = 1, then the dyad is said to be normalized.
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A symmetric matrix is a way to describe a weighted, undirected graph: each
edge in the graph is assigned a weight Aij . Since the graph is undirected, the
edge weight is independent of the direction (from i to j or vice-versa). Hence,
A is symmetric.

Another interesting special case of a symmetric matrix is the Jacobian of a
function at a given point, which is the matrix containing the second derivatives of
the function. Here, we invoke the fact that the second-derivative is independent
of the order in which derivatives are taken.

Finally, any quadratic function q : Rn → R can be written as

q(x) =

(
x
1

)T
A

(
x
1

)
,

for an appropriate symmetric matrix A ∈ S(n+1). If q is a quadratic form
(meaning that there are no linear or constant terms in it), then we can write
q(x) = xTAx where now A ∈ Sn.

2.3.2 Eigenvalue decomposition

A fundamental result of linear algebra states that any symmetric matrix can be
decomposed as a weighted sum of normalized dyads that are orthogonal to each
other.

Precisely, for every A ∈ Sn, there exist numbers λ1, . . . , λn and an orthonor-
mal basis (u1, . . . , un), such that

A =

n∑
i=1

λiuiu
T
i .

In a more compact matrix notation, we haveA = UΛUT , with Λ = diag(λ1, . . . , λn),
and U = [u1, . . . , un].

The numbers λ1, . . . , λn are called the eigenvalues of A, and are the roots of
the characteristic equation

det(λI −A) = 0,

where In is the n×n identity matrix. For arbitrary square matrices, eigenvalues
can be complex. In the symmetric case, the eigenvalues are always real. Up to a
permutation, eigenvalues are unique, in the sense that there are only n (possibly
distinct) solutions to the above equation.

The vectors ui, i = 1, . . . , n, are called the (normalized) eigenvectors of A.
In contrast with eigenvalues, there is no unicity property here. For example, the
identity matrix has any (unit-norm) vector as eigenvector. However, if all the
eigenvalues are distinct, then eigenvectors are unique (up to a change in sign).

It is interesting to see what the eigenvalue decomposition of a given symmet-
ric matrix A tells us about the corresponding quadratic form, qA(x) := xTAx.
With A = UΛUT , we have

qA(x) = (UTx)TΛ(UTx) =

n∑
i=1

λi(u
T
i x)2.

The eigenvalue decomposition thus corresponds to the decomposition of the
corresponding quadratic form into a sum of squares.
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2.3.3 Positive semi-definite matrices

Definition. A matrix A ∈ Sn is said to be positive-definite (resp. positive
semi-definite) if and only if all the eigenvalues are positive (resp. non-negative).
We use the acronyms PD and PSD for these properties. The set of n× n PSD
matrices is denoted Sn+, while that of PD matrices is written Sn++. Often, we
use the notation A � 0 (resp. A �) for the PSD (resp. PD) property.

In terms of the associated quadratic form qA(x) = xTAx, the interpretation
is as follows. A matrix A is PD if and only if qA is a positive-definite function,
that is, qA(x) = 0 if and only if x = 0. Indeed, when λi > 0 for every i, then
the condition

qA(x) =

n∑
i=1

λi(u
T
i x)2 = 0

trivially implies uTi x = 0 for every i, which can be written as Ux = 0. Since
U is orthogonal, it is invertible, and we conclude that x = 0. Thus, to any PD
matrix A, we can associate a norm, ‖x‖A :=

√
xTAx.

Square root and Cholesky decomposition. For PD matrices, we can gen-
eralize the notion of ordinary square root of a non-negative number. Indeed, if
A is PSD, there exist a unique PD matrix, denoted A1/2, such that A = (A1/2)2.
If A is PD, then so is its square root.

Any PSD matrix can be written as a product A = LLT for an appropriate
matrix L. The decomposition is not unique, and R = A1/2 is only a possible
choice. If A is positive-definite, then we can choose L to be lower triangular, and
invertible. The decomposition is then known as the Cholesky decomposition.
The corresponding weighted norm ‖x‖A mentioned above is then simply the
Euclidean norm of LTx.

Examples and interpretations. A well-known example of a PSD matrix is
the covariance matrix associated with a random variable in Rn. This matrix is
defined as

Σ = E(x− x̂)(x− x̂)T ,

where x̂ := Ex, and E denotes the expectation operator associated with the
distribution of the random variable x.

Another important example is geometric. For a PD matrix P , and vector x̂,
the set

E(x̂, P ) :=
{
x : (x− x̂)TP−1(x− x̂) ≤ 1

}
is an ellipsoid, with center x̂. Its principal axes are given by the orthogonal basis
that diagonalizes P , and the semi-axis lengths are the eigenvalues. (Check what
happens when P is proportional to the identity.) If P is factored as P = LLT

for some (lower-triangular) matrix L, then the ellipsoid can be interpreted as
the affine transformation of a unit Euclidean ball:

E(x̂, P ) = {x̂+ Lu : ‖u‖2 ≤ 1} .
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Chapter 3

Convex Optimization
Problems

3.1 Convex Sets

3.1.1 Definition

A subset C of Rn is convex if and only if it contains the line segment between
any two points in it:

∀ x1, x2 ∈ C, ∀ θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1 : θ1x1 + θ2x2 ∈ C.

Some important special cases of convex sets are the following.

• The set is said to be an affine subspace if it contains the entire line passing
through any two points. This corresponds to the condition above, with
θ1, θ2 arbitrary. Subspaces and affine subspaces are convex.

• The set is said to be a convex cone if the condition above holds, but with
the restriction θ1 + θ2 = 1 removed.

3.1.2 Examples

• The convex hull of a set of points {x1, . . . , xm} is defined as

Co(x1, . . . , xm) :=

{
m∑
i=1

λixi : λ ∈ Rm
+ ,

m∑
i=1

λi = 1

}
,

and is convex. The conic hull:{
m∑
i=1

λixi : λ ∈ Rm
+

}
is a convex cone.

• For a ∈ Rn, and b ∈ R, the hyperplane H = {x : aTx = b} is affine. The
half-space {x : aTx ≤ b} is convex.

• For a square, non-singular matrix R ∈ Rn×n, and xc ∈ Rn, the ellipsoid
{xc +Ru : ‖u‖2 ≤ 1} is convex. (The center of the epllipsoid is xc, and
you can think of R as the ”radius”.) With P = RRT , we can describe the
ellipsoid as {

x : (x− xc)TP−1(x− xc) ≤ 1
}
.

19
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• A polyhedron is a set described by a finite number of affine inequalities
and equalities:

P = {x : Ax ≤ b, Cx = d} ,
where A,C are matrices, b, d are vectors, and inequalities are understood
component-wise. Sometimes bounded polyhedra are referred to as poly-
topes.

• The probability simplex {
p ∈ Rn

+ :

n∑
i=1

pi = 1

}
is a special case of a polyhedron, and is useful to describe discrete proba-
bilities.

• The second-order cone{
(x, t) ∈ Rn+1 : t ≥ ‖x‖2

}
(3.1)

is a convex cone. It is sometimes called “ice-cream cone”, for obvious
reasons. (We will prove the convexity of this set later.)

• The positive semi-definite cone

Sn+ :=
{
X = XT ∈ Rn×n : X � 0

}
is a convex cone. (Again, we will prove the convexity of this set later.)

3.1.3 Support and indicator functions

For a given set S, the function

φS(x) := max
u∈S

xTu

is called the support function of S. If S is the unit ball for some norm: S = {u :
‖u‖ ≤ 1}, then the support function of S is the dual norm. Another important
function associated with S is the indicator function

IS(x) =

{
0 x ∈ S,
+∞ x 6∈ S.

3.1.4 Operations that preserve convexity

Two important operations that preserve convexity are:

• Intersection: the intersection of a (possibly infinite) family of convex sets
is convex. We can use this property to prove that the semi-definite cone
Sn+ is convex, since

Sn+ =
{
X = XT ∈ Rn×n : ∀ z ∈ Rn, zTXz ≥ 0

}
,

from which we see that the set is the intersection of the subspace of sym-
metric matrices with a set described by an infinite number of linear in-
equalities of the form zTXz ≥ 0, indexed by z ∈ Rn. Likewise, the
second-order cone defined in (3.1) is convex, since the condition t ≥ ‖x‖2
is equivalent to the infinite number of affine inequalities t ≥ uTx, ‖u‖2 ≤ 1.

• Affine transformation: If a function is affine (that is, it is the sum of a
linear function and a constant), and C is convex, then the set

f(C) := {f(x) : x ∈ C}
is convex. A particular example is projection on a subspace, which pre-
serves convexity.
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3.1.5 Separation theorems

There are many versions of separation theorems in convex analysis. One of them
is the separating hyperplane theorem:

Theorem 1 (Separating hyperplane) If C, D are two convex subsets of Rn

that do not intersect, then there is an hyperplane that separates them, that is,
there exit a ∈ Rn, a 6= 0, and b ∈ R, such that aTx ≤ b for every x ∈ C, and
aTx ≥ b for every x ∈ D.

Another result involves the separation of a set from a point on its boundary:

Theorem 2 (Supporting hyperplane) If C ⊆ Rn is convex and non-empty,
then for any x0 at the boundary of C, there exist a supporting hyperplane to C
at x0, meaning that there exist a ∈ Rn, a 6= 0, such that aT (x − x0) ≤ 0 for
every x ∈ C.

3.2 Convex Functions

3.2.1 Domain of a function

The domain of a function f : Rn → R is the set domf ⊆ Rn over which f is
well-defined, in other words:

dom f := {x ∈ Rn : −∞ < f(x) < +∞}.

Here are some examples:

• The function with values f(x) = log(x) has domain dom f = R++.

• The function with values f(X) = log det(X) has domain dom f = Sn++

(the set of positive-definite matrices).

3.2.2 Definition of convexity

A function f : Rn → R is convex if

i) dom f is convex;

ii) ∀x, y ∈ dom f and ∀λ ∈ [0, 1], f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Note that the convexity of the domain is required. For example, the function
f : R→ R defined as

f(x) =

{
x if x 6∈ [−1, 1]
+∞ otherwise

is not convex, although is it linear (hence, convex) on its domain ] −∞,−1) ∪
(1,+∞[.

We say that a function is concave if −f is convex.
Here are some examples:

• The support function of any set is convex.

• The indicator function of a set is convex if and only if the set is convex.

• The quadratic function f(x) = xTPx+2qTx+r, with P ∈ Sn++, is convex.
(For a proof, see later.)

• The function f : R→ R defined as f(x) = 1/x for x > 0 and f(x) = +∞
is convex.
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3.2.3 Alternate characterizations of convexity

Let f : Rn → R. The following are equivalent conditions for f to be convex.

• Epigraph condition: f is convex if and only if its epigraph

epif :=
{

(x, t) ∈ Rn+1 : t ≥ f(x)
}

is convex. We can us this result to prove for example, that the largest
eigenvalue function λmax : Sn → R, which to a given n × n symmetric
matrix X associates its largest eigenvalue, is convex, since the condition
λmax(X) ≤ t is equivalent to the condition that tI −X ∈ Sn+.

• Restriction to a line: The function f is convex if and only if its restriction
to any line is convex, meaning that for every x0 ∈ Rn, and v ∈ Rn, the
function g(t) := f(x0 + tv) is convex.

For example, the function f(X) = log detX is convex. (Prove this as
an exercise.) You can also use this to prove that the quadratic function
f(x) = xTPx+ 2qTx+ r is convex if and only if P � 0.

• First-order condition: If f is differentiable (that is, domf is open and the
gradient exists everywhere on the domain), then f is convex if and only if

∀ x, y : f(y) ≥ f(x) +∇f(x)T (y − x).

The geometric interpretation is that the graph of f is bounded below
everywhere by anyone of its tangents.

• Second-order condition: If f is twice differentiable, then it is convex if
and only if its Hessian ∇2f is positive semi-definite everywhere. This is
perhaps the most commonly known characterization of convexity.

For example, the function f(x, t) = xTx/t with domain {(x, t) : t > 0}, is
convex. (Check this!) Other examples include the log-sum-exp function,
f(x) = log

∑n
i=1 expxi, and the quadratic function alluded to above.

3.2.4 Operations that preserve convexity

• The nonnegative weighted sum of convex functions is convex.

• The composition with an affine function preserves convexity: ifA ∈ Rm×n,
b ∈ Rm and f : Rm → R is convex, then the function g : Rn → R with
values g(x) = f(Ax+ b) is convex.

• The pointwise maximum of a family of convex functions is convex: if
(fα)α∈A is a family of convex functions index by α, then the function

f(x) := max
α∈A

fα(x)

is convex. For example, the dual norm

x→ max
y :‖y‖≤1

yTx

is convex, as the maximum of convex (in fact, linear) functions (indexed
by the vector y). Another example is the largest singular value of a matrix
A: f(A) = σmax(A) = maxx : ‖x‖2=1 ‖Ax‖2. Here, each function (indexed
by x ∈ Rn) A → ‖Ax‖2 is convex, since it is the composition of the
Euclidean norm (a convex function) with an affine function A→ Ax.
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Also, this can be used to prove convexity of the function we introduced in
lecture 2,

‖x‖1,k :=

k∑
i=1

|x|[i] = max
u

uT |x| :

n∑
i=1

ui = k, u ∈ {0, 1}n,

where we use the fact that for any u feasible for the maximization problem,
the function x→ uT |x| is convex (since u ≥ 0).

• If f is a convex function in x = (y, z), then the function g(y) := minz f(y, z)
is convex. (Note that joint convexity in (y, z) is essential.)

• If f is convex, its perspective g(x, t) := tf(x/t) with domain domg =
{(x, t) : x ∈ domf, t > 0}, is convex. You can use this to prove convexity
of the function f(x, t) = xTx/t, with domain {(x, t) : t > 0}.

• The composition with another function does not always preserve convexity.
However, if the functions gi : Rn → R, i = 1, . . . , k are convex and h :
Rk → R is convex and non-decreasing in each argument, with domgi =
domh = R, then x→ (h ◦ g)(x) := h(g1(x), . . . , gk(x)) is convex.

For example, if gi’s are convex, then log
∑
i exp gi also is.

3.2.5 Conjugate function

The conjugate function of a function f : Rn → R is the function defined as

f∗(y) = max
x

xT y − f(x) : x ∈ domf.

The function f∗ is convex (even if f is not). The conjugate function plays a
very important role in convex optimization, similar to the Fourier transform in
signal processing.

For example, the conjugate of the convex quadratic function f(x) = (1/2)xTQx,
with Q � 0, is f∗(y) = (1/2)yTQ−1y. Another important example is the con-
jugate of a norm, which is the indicator function of the unit ball for the dual
norm:

f∗(y) =

{
0 if ‖y‖∗ ≤ 1,
+∞ otherwise

The conjugate of a conjugate is not always the original function. However,
if f is convex, and closed (meaning that its epigraph is), then f∗∗ = f .

3.3 Convex Optimization Problems

3.3.1 Terminology

Standard form. The problem

min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
Ax = b, i = 1, · · · , p,

(3.2)

is called a convex optimization problem if the objective function f0 is convex;
the functions defining the inequality constraints fi, i = 1, . . . ,m are convex;
and A ∈ Rp×n, b ∈ Rp define the affine equality constraints. Note that, in the
convex optimization model, we do not tolerate equality constraints other than
affine ones.
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Optimal value and feasible set. We usually denote by p∗ the optimal value
of the problem, and by X the feasible set:

X = {x ∈ Rn : fi(x) ≤ 0, i = 1, · · · ,m, Ax = b} .

If X is empty, then we say that the problem is not feasible. By convention, in this
case we set p∗ = +∞. The optimal value can also assume the value−∞, in which
case we say that the problem is unbounded below. An example of a problem that
is unbounded below is an unconstrained problem with f0(x) = − log x, with
domain R++.

Feasibility problems. In some instances, we do not care about any objective
function, and simply seek a feasible point. This so-called feasibility problem can
be formulated in the standard form, using a zero (or constant) objective.

3.3.2 Optimality

Local and global optima. A feasible point x∗ ∈ X is a globally optimal
(optimal for short) if f0(x) = p∗.

A feasible point x∗ ∈ X is a locally optimal if there exist R > 0 such
that f(x∗) equals the optimal value of problem (3.2) with the added constraint
‖x− x∗‖ ≤ R. That is, x∗ solves the problem “locally”.

For convex problems, any locally optimal point is globally optimal.
Indeed, let x∗ be a local minimizer of f0 on the set X , and let y ∈ X . By

definition, x∗ ∈ dom f0. We need to prove that f0(y) ≥ f0(x∗) = p∗. There
is nothing to prove if f0(y) = +∞, so let us assume that y ∈ dom f0. By
convexity of f0 and X , we have xθ := θy + (1− θ)x∗ ∈ X , and:

f0(xθ)− f0(x∗) ≤ θ(f0(y)− f0(x∗)).

Since x∗ is a local minimizer, the left-hand side in this inequality is nonnegative
for all small enough values of θ > 0. We conclude that the right hand side is
nonnegative, i.e., f0(y) ≥ f0(x∗), as claimed.

Optimal set. The optimal set, X opt, is the set of optimal points. This set
may be empty: for example, the feasible set may be empty. Another example
is when the optimal value is only reached in the limit; think for example of the
case when n = 1, f0(x) = expx, and there are no constraints.

In any case, the optimal set is convex, since it can be written

X opt = {x ∈ Rn : f0(x) ≤ p∗, x ∈ X} .

Optimality condition. When f0 is differentiable, then we know that for
every x, y ∈ dom f0,

f0(y) ≥ f0(x) +∇f0(x)T (y − x).

Then x is optimal if and only if

∀ y ∈ X : ∇f0(x)T (y − x) ≥ 0.

If ∇f0(x) 6= 0, then it defines a supporting hyperplane to the feasible set at x.
Some examples of optimality conditions:

• For unconstrained problems, the optimality condition reduces to∇f0(x) =
0.
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• For problems with equality constraints only, the condition is that there
exists a vector ν ∈ Rp such that

x ∈ dom f0, Ax = b, ∇f0(x) = AT ν.

Indeed, the optimality condition can be written as: ∇f0(x)Tu ≥ 0 for
every u ∈ N (A), which is the same as ∇f0(x)Tu = 0 for every u ∈ N (A).
In turn, the latter means that ∇f0(x) belongs to R(AT ), as claimed.

• For problems involving a single norm bound:

min
x

f0(x) : ‖x‖ ≤ 1,

the condition reads

x ∈ dom f0, ‖x‖ ≤ 1, −∇f0(x)Tx ≥ ‖∇f0(x)‖∗.

From this, we conclude that if the constraint is not satisfied with equality
at optimum, that is, ‖x‖ < 1, then ∇f0(x) = 0, and the problem is
effectively unconstrained (it has the same solution as the unconstrained
problem).

The optimality conditions given above might be hard to solve. We will return
to this issue later.

3.3.3 Equivalent problems

We can transform a convex problem into an equivalent one via a number of
transformations. Sometimes the transformation is useful to obtain an explicit
solution, or is done for algorithmic purposes. The transformation does not
necessarily preserve the convexity properties of the problem. Here is a list of
transformations that do preserve convexity.

Epigraph form. Sometimes it is convenient to work with the equivalent epi-
graph form:

min
(x,t)

t : t ≥ f0(x), x ∈ X ,

in which we observe that we can always assume the cost function to be differ-
entiable (in fact, linear), at the cost of adding one scalar variable.

Implicit constraints. Even though some problems appear to be unconstrained,
they might contain implicit constraints. Precisely, the problem above has an
implicit constraint x ∈ D, where D is the problem’s domain

D := dom f0

m⋂
i=1

dom fi.

For example, the problem

min
x

cTx−
m∑
i=1

log(bi − aTi x),

where c ∈ Rn, b ∈ Rm and aTi ’s are the rows of A ∈ Rm×n, arises as an
important sub-problem in some linear optimization algorithms. This problem
has the implicit constraint that x should belong to the interior of the polyhedron
P = {x : Ax ≤ b}.
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Making explicit constraints implicit. The problem in standard form can
be also written in a form that makes the constraints that are explicit in the orig-
inal problem, implicit. Indeed, an equivalent formulation is the unconstrained
convex problem

min
x

f(x)

where f is the sum of the original objective and the indicator function of the
feasible set X :

f(x) = f0(x) + 1X (x) =

{
f0(x) x ∈ X
+∞ x 6∈ X .

In the unconstrained above, the constraints are implicit. One of the main differ-
ences with the original, constrained problem is that now the objective function
may not be differentiable, even if all the functions fi’s are.

A less radical approach involves the convex problem wih one inequality con-
straint

min
x

f0(x) : Ax = b, g(x) := max
1≤i≤m

fi(x) ≤ 0,

which is equivalent to the original problem. In the above formulation, the
structure of the inequality constraint is made implicit. Here, the reduction to a
single constraint has a cost, since the function g may not be differentiable, even
though all the fi’s are.

The above transformations show the versatility of the convex optimization
model. They are also useful in the analysis of such problems.

Equality constraint elimination. We can eliminate the equality constraint
Ax = b, by writing them as x = x0 + Nz, with x0 a particular solution to the
equality constraint, and the columns of N span the nullspace of A. Then we
can rewrite the problem as one without equality constraints:

min
z

f0(Nz + x0) : fi(Nz + x0) ≤ 0, i = 1, . . . ,m.

This transformation preserves convexity of the the function involved. In prac-
tice, it may not be a good idea to perform this elimination. For example, if A
is sparse, the original problem has a sparse structure that may be exploited by
some algorithms. In contrast, the reduced problem above does not inherit the
sparsity characteristics, since in general the matrix N is dense.

Introducing equality constraints. We can also introduce equality con-
straints in the problem. There might be several justifications for doing so:
to reduce a given problem to a standard form used by off-the-shelf algorithms,
or to use in decomposition methods for large-scale optimization.

The following example shows that introducing equality constraint may allow
to exploit sparsity patterns inherent to the problem. Consider

min
(xk)Kk=1,y

K∑
k=1

f0,k(xk) : fk(xk, y) ≤ 0, k = 1, . . . ,K.

In the above the objective involves different optimization variables, which are
coupled via the presence of the “coupling” variable y in each constraint. We
can introduce K variables and rewrite the problem as

min
(xk)Kk=1,(yk)Kk=1,y

K∑
k=1

f0,k(xk) : fk(xk, yk) ≤ 0, y = yk, k = 1, . . . ,K.
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Now the objective and inequality constraints are all independent (they involve
different optimization variables). The only coupling constraint is now an equal-
ity constraint. This can be exploited in parallel algorithms for large-scale opti-
mization.

Slack variables. Sometimes it is useful to introduce slack variables. For
example, the problem with affine inequalities

min
x

f0(x) : Ax ≤ b

can be written
min
x,s

f0(x) : Ax+ s = b, s ≥ 0.

Minimizing over some variables. We may “eliminate” some variables of
the problem and reduce it to one with fewer variables. This operation preserves
convexity. Specifically, if f is a convex function of the variable x ∈ Rn, and x
is partitioned as x = (x1, x2), with xi ∈ Rni , i = 1, 2, n = n1 + n2, then the
function

f̃(x1) := min
x=(x1,x2)

f(x1, x2)

is convex (look at the epigraph of this function). Hence the problem of mini-
mizing f can be reduced to one involving x1 only:

min
x1

f̃(x1).

The reduction may not be easy to carry out explicitly.
Here is an example where it is: consider the problem

min
x=(x1,x2)

xTQx : Ax1 ≤ b

where

Q :=

(
Q11 Q12

QT12 Q22

)
is positive semi-definite, Q22 is positive-definite, and Qij ∈ Rni×nj , i, j = 1, 2.
Since Q � 0, the above problem is convex. Furthermore, since the problem has
no constraints on x2, it is possible to solve for the minimization with respect to
x2 analytically. We end up with

min
x1

xT1 Q̃x1 : Ax1 ≤ b

with Q̃ := Q11 − Q12Q
−1
22 Q

T
12. From the reasoning above, we infer that Q̃ is

positive semi-definite, since the objective function of the reduced problem is
convex.

3.3.4 Maximization of convex functions

Sometimes we would like to maximize a convex function over a set S. Such
problems are usually hard to solve. The problem of maximizing the distance
from a given point (say, 0) to a point in a polyhedron described as {x : Ax ≤ b}
is an example of such hard problems.

One important property of convex functions is that their maximum over any
set is the same as the maximum over the convex hull of that set. That is, for
any set S ⊆ Rn and any convex function f : Rn → R, we have

max
x∈S

f(x) = max
x∈CoS

f(x).
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To prove this result is simple and I recommend you try.

In the example mentioned above, where we seek to maximize the Euclidean
norm of a point in a polyhedron, if we know the vertices of the polyhedron, that
is, we can express the polyhedron as P = Co{x(1), . . . , x(K)}, then the optimal
distance is simply max1≤i≤K ‖x(i)‖2. Unfortunately, in practice, finding the
vertices (given the original representation of P as an intersection of hyperplanes)
is hard, and might involve an exponential number of vertices.

3.4 Linear Optimization

3.4.1 Definition and standard forms

Definition. A linear optimization problem (or, linear program, LP) is one of
the standard form:

min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
Ax = b, i = 1, · · · , p,

where every function f0, f1, . . . , fm is affine. Thus, the feasible set of an LP is
a polyhedron.

Standard forms. Linear optimization problems admits several standard forms.
One is derived from the general standard form:

min
x

cTx+ d : Ax = b, Cx ≤ h,

where the inequalities are understood componentwise1. The constant term d in
the objective function is, of course, immaterial.

Another standard form—used in several off-the-shelf algorithms—-is

min
x

cTx : Ax = b, x ≥ 0.

We can always transform the above problem into the previous standard form,
and vice-versa.

3.4.2 Examples

Piece-wise linear minimization. A piece-wise linear function is the point-
wise maximum of affine functions, and has the form

f(x) = max
1≤i≤m

(aTi x+ bi),

for appropriate vectors ai and scalars bi, i = 1, . . . ,m. The (unconstrained)
problem of minimizing the piece-wise linear function above is not an LP. How-
ever, its epigraph form:

min
x,t

t : t ≥ aTi x+ bi, i = 1, . . . ,m

is.

1Notice that the convention for componentwise inequalities differs from the one adopted in
BV. I will reserve the symbol � or � for negative and positive semi-definiteness of symmetric
matrices.
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Figure 3.1: A linear classifier, with a total of four errors on the training set.
The sum of the lengths of the dotted lines (which correspond to classification
errors) is the value of the loss function at optimum.

l1-norm regression. A related example involves the minimization of the l1-
norm of a vector that depends affinely on the variable. This arises in regression
problems, such as image reconstruction. Using a notation similar to the previous
example, the problem has the form

min
x

m∑
i=1

|aTi x+ bi|.

The problem is not an LP, but we can introduce slack variables and re-write the
above in the equivalent, LP format:

min
x,v

m∑
i=1

vi : − vi ≤ aTi x+ bi ≤ vi, i = 1, . . . ,m.

Linear binary classification. Consider a two-class classification problem as
shown in Figure 3.1. Given m data points xi ∈ Rn, each of which is associated
with a label yi ∈ {−1, 1}, the problem is to find a hyperplane that separates, as
much as possible, the two classes.

The two classes are separable by a hyperplane H(w, b) = {x : wTx+ b ≤ 0},
where w ∈ Rn, w 6= 0, and b ∈ R, if and only if wTxi + b ≥ 0 for yi = +1, and
wTxi + b ≤ 0 if yi = −1. Thus, the conditions on (w, b)

yi(w
Txi + b) ≥ 0, i = 1, . . . ,m

ensure that the data set is separable by a linear classifier. In this case, the
parameters w, b allow to predict the label associated to a new point x, via
y = sign(wTx + b). The feasibility problem—finding (w, b) that satisfy the
above separability constraints—is an LP. If the data set is strictly separable
(every condition in (3.3) holds strictly), then we can re-scale the constraints
and transform them into

yi(w
Txi + b) ≥ 1, i = 1, . . . ,m. (3.3)

In practice, the two classes may not be linearly separable. In this case, we
would like to minimize, by proper choice of the hyperplane parameters, the total
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number of classification errors. Our objective function has the form

m∑
i=1

ψ(yi(w
Txi + b)),

where ψ(t) = 1 if t < 0, and 0 otherwise.
Unfortunately, the above objective function is not convex, and hard to min-

imize. We can replace it by an upper bound, which is called the hinge function,
h(t) = (1 − t)+ = max(0, 1 − t). Our problem becomes one of minimizing a
piece-wise linear “loss” function:

min
w,b

m∑
i=1

(1− yi(wTxi + b))+.

In the above form, the problem is not yet an LP. We may introduce slack
variables to obtain the LP form:

min
w,b,v

m∑
i=1

vi : v ≥ 0, yi(w
Txi + b) ≥ 1− vi, i = 1, . . . ,m.

The above can be seen as a variant of the separability conditions (3.3), where
we allow for infeasibilities, and seek to minimize their sum. The value of the loss
function at optimum can be read from Figure 3.1: it is the sum of the lengths of
the dotted lines, from data points that are wrongly classified, to the hyperplane.

Network flow. Consider a network (directed graph) having m nodes con-
nected by n directed arcs (ordered pairs (i, j)). We assume there is at most one
arc from node i to node j, and no self-loops. We define the arc-node incidence
matrix A ∈ Rm×n to be the matrix with coefficients Aij = 1 if arc j starts at
node i, −1 if it ends there, and 0 otherwise. Note that the column sums of A
are zero: 1TA = 0.

A flow (of traffic, information, charge) is represented by a vector x ∈ Rn,
and the total flow leaving node i is then (Ax)i =

∑n
j=1Aijxj .

The minimum cost network flow problem has the LP form

min
x

cTx : Ax = b, l ≤ x ≤ u,

where ci is the cost of flow through arc i, l, u provide upper and lower bounds
on x and b ∈ Rm is an external supply vector. This vector may have positive
or negative components, as it represents supply and demand. We assume that
1T b = 0, so that the total supply equals the total demand. The constraint
Ax = b represents the balance equations of the network.

A more specific example is the max flow problem, where we seek to maximize
the flow between node 1 (the source) and node m (the sink). It bears the form

min
x,t

t : Ax = te, l ≤ x ≤ u,

with e = (1, 0, . . . , 0,−1).

LP relaxation of boolean problems. A boolean optimization problem is
one where the variables are constrained to be boolean. An example of boolean
problem is the so-called boolean LP

p∗ = min
x

cTx : Ax ≤ b, x ∈ {0, 1}n.
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Such problems are non-convex, and usually hard to solve. The LP relaxation
takes the form

p∗LP := min
x

cTx : Ax ≤ b, 0 ≤ x ≤ 1.

The relaxation provides a lower bound on the original problem: p∗LP ≤ p∗.
Hence, its optimal points may not be feasible (not boolean). Even though a
solution of the LP relaxation may not necessarily be boolean, we can often
interpret it as a fractional solution to the original problem. For example, in a
graph coloring problem, the LP relaxation colors the nodes of the graph not
with a single color, but with many.

Boolean problems are not always hard to solve. Indeed, in some cases, one
can show that the LP relaxation provides an exact solution to the boolean
problem, as optimal points turn out to be boolean. A few examples in this
category, involving network flow problems with boolean variables:

• The weighted bipartite matching problem is to match N people to N tasks,
in a one-to-one fashion. The cost of matching person i to task j is Aij .
The problem reads

min
x

N∑
i,j=1

Aijxij :

xij ∈ {0, 1}
∀ j,

∑N
i=1 xij = 1 (one person for each task)

∀ i,
∑N
j=1 xij = 1 (one task for each person)

• The shortest path problem has the form

min
x

1Tx : Ax = (1, 0, . . . , 0,−1), x ∈ {0, 1}n,

where A stands for the incidence matrix of the network, and arcs with
xi = 1 form a shortest forward path between nodes 1 and m. As before
the LP relaxation in this case is exact, in the sense that its solution is
boolean. (The LP relaxation problem can be solved very efficiently with
specialized algorithms.)

3.5 Overview of conic optimization

3.5.1 Conic optimization models.

The linear optimization model can be written in standard form as

min
x

cTx : Ax = b, x ≥ 0,

where we express the feasible set as the intersection of an affine subspace {x :
Ax = b}, with the non-negative orthant, Rn

+. One can think of the linear
equality constraints, and the objective, as the part in the problem that involves
the data (A, b, c), while the sign constraints describe its structure.

With the advent of provably polynomial-time methods for linear optimiza-
tion in the late 70’s, researchers tried to generalize the linear optimization model,
in a way that retained the nice complexity properties of the linear model.

Early attempts at generalizing the above model focussed on allowing the
linear map x → Ax to be nonlinear. Unfortunately, as soon as we introduce
non-linearities in the equality constraints, the model becomes non-convex and
potentially intractable numerically. Thus, modifying the linear equality con-
straints is probably not the right way to go.

Instead, one can try to modify the ”structural” constraints x ∈ Rn
+. If

one replaces the non-negative orthant with another set K, then we obtain a
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generalization of linear optimization. Clearly, we need K to be a convex set,
and we can further assume it to be a cone (if not, we can always introduce a
new variable and a new equality constraint in order to satisfy this condition).
Hence the motivation for the so-called conic optimization model:

min
x

cTx : Ax = b, x ∈ K, (3.4)

where K is a given convex cone.

The issue becomes then of finding those convex cones K for which one can
adapt the efficient methods invented for linear optimization, to the conic prob-
lem above. A nice theory due to Nesterov and Nemirovski, which they developed
in the late 80’s, allows to find a rich class of cones for which the corresponding
conic optimization problem is numerically tractable. We refer to this class as
tractable conic optimization.

3.5.2 Tractable conic optimization.

The cones that are “allowed” in tractable conic optimization are of three basic
types, and include any combination (as detailed below) of these three basic
types. The three basic cones are

• The non-negative orthant, Rn
+. (Hence, conic optimization includes linear

optimization as a special case.)

• The second-order cone, Qn := {(x, t) ∈ Rn
+ : t ≥ ‖x‖2}.

• The semi-definite cone, Sn+ = {X = XT � 0}.

A variation on the second-order cone, which is useful in applications, involves the
rotated second-order cone Qnrot := {(x, y, z) ∈ Rn+2 : 2yz ≥ ‖x‖22, y ≥ 0, z ≥ 0}.
We can easily convert the rotated second-order cone into the ordinary second-
order cone representation, since the constraints 2yz ≥ ‖x‖22, y ≥ 0, z ≥ 0, are
equivalent to

(y + z) ≥
∥∥∥∥ (y − z)√

2 x

∥∥∥∥
2

.

We can build all sorts of cones that are admissible for the tractable conic op-
timization model, using combinations of these cones. For example, in a specific
instance of the problem, we might have constraints of the form

x1 ≥ 0, x3 ≥
√
x2

1 + x2
2,

(
x2 x4

x4 x5

)
� 0.

The above set of constraints involves the non-negative orthant (first constraint),
the second-order cone (second constraint), and the third, the semi-definite cone.

We can always introduce new variables and equality constraints, to make
sure that the cone K is a direct product of the form K1 × . . .×Km, where each
Ki is a cone of one of the three basic types above. In the example above, since
the variable x2 appears in two of the cones, we add a new variable x6 and the
equality constraint x2 = x6. With that constraint, the constraint above can be
written x = (x1, . . . , x6) ∈ K, where K is the direct product R+ ×Q2 × S2

+.

Note that the three basic cones are nested, in the sense that we can interpret
the non-negative orthant as the projection of a direct product of second-order
cones on a subspace (think of imposing x = 0 in the definition of Qn). Likewise,
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a projection of the semi-definite cone on a specific subspace gives the second-
order cone, since

‖x‖2 ≤ t⇐⇒


t x1 . . . xn
x1 t 0
...

. . .

xn 0 t

 � 0.

(The proof of this exercise hinges on the Schur complement lemma, see BV,
pages 650-651.)

3.6 Second-order cone optimization

3.6.1 Definitions

3.6.2 Standard form.

We say that a problem is a second-order cone optimization problem (SOCP) if
it is a tractable conic optimization problem of the form (3.4), where the cone K
is a product of second-order cones and possibly the non-negative orthant Rn

+.
A standard form for the SOCP model is

min
x

cTx : Ax = b, ‖Cix+ di‖2 ≤ eTi x+ fi, i = 1, . . . ,m,

where we see that the variables (Cix+ di, e
T
i x+ fi) should belong to a second-

order cone of appropriate size. This corresponds to a convex problem in standard
form, with the constraint functions fi(x) = ‖Cix+ di‖2 − (eTi x+ fi).

SOCPs contain LPs as special cases, as seen from the standard form above,
with Ci, di all zero.

3.6.3 Special case: convex quadratic optimization.

Convex quadratic optimization (often written QP for short) corresponds to the
convex optimization model

min
x

xTQx+ cTx : Cx ≤ d, Ax = b,

where Q = QT � 0. Thus, QPs are extensions of LPs where a convex, quadratic
term is added to the linear objective.

We can view QPs as special cases of SOCP: first, we express the problem in
a way to make the objective linear:

min
x,t

t+ cTx : Cx ≤ d, Ax = b, t ≥ xTQx,

then we observe that the last constraint can be expressed using a rotated second-
order cone. Precisely, we have t ≥ xTQx if and only if (Q1/2x, t, 1) ∈ Qnrot.

3.6.4 Quadratically constrained, convex quadratic opti-
mization.

QCQPs, as they are know by their acronym, correspond to problems of the form

min
x

q0(x) : qi(x) ≤ 0, i = 1, . . . ,m,
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where the functions q0, . . . , qm are all convex and quadratic:

qi(x) = xTQix+ 2pTi x+ ri, i = 1, . . . ,m,

with Qi � 0. Using rotated second-order cones, we can cast such problems as
SOCPs.

Note that SOCPs cannot, in general, be cast as QCQPs. Consider a single
SOC constraint of the form

‖Cx+ d‖2 ≤ eTx+ f.

One may be tempted to square the SCO constraints and obtain a quadratic
constraint of the form

‖Cx+ d‖22 ≤ (eTx+ f)2, eTx+ f ≥ 0.

While the above constraints are equivalent to the original SOC constraint, the
first is not convex.

3.6.5 Examples

3.6.6 Risk-return trade-off in portfolio optimization

Consider the problem of investing in n assets, whose returns over one period
(say, a month) are described as a random variable y ∈ Rn, with mean ŷ and
covariance matrix Σ. A portfolio is described as a vector x ∈ Rn, with xi the
amount invested in asset i (if no short-selling is allowed, we impose x ≥ 0; in
general, we might impose that the portfolio vector belongs to a given polyhedron
P). The return of the portfolio is then xT y, and is a random variable with mean
xT ŷ and variance xTΣx. The problem introduced by Markowitz seeks to find a
trade-off between the expected return and the risk (variance) of the portfolio:

max
x∈P

ŷTx− γxTΣx,

where γ > 0 is a “risk-aversion” parameter. The above is a QP (convex
quadratic program), a special case of SOCP.

3.6.7 Robust half-space constraint

Consider a constraint on x ∈ Rn of the form aTx ≤ b, with a ∈ Rn and b ∈ R.
Now assume that a is only known to belong to an ellipsoid E = {â + Ru :
‖u‖2 ≤ 1}, with center â ∈ Rn and R ∈ Rn×k given. How can we guarantee
that, irrespective of the choice of a ∈ E , we still have aTx ≤ b?

The answer to this question hinges on the condition

b ≥ max
a∈E

aTx = âTx+ max
‖u‖2≤1

xTRu = âTx+ ‖RTx‖2.

The above constraint is a second-order cone constraint.

3.6.8 Robust linear programming

Consider a linear optimization problem of the form

min
x

cTx : aTi x ≤ bi, i = 1, . . . ,m.

In practice, the coefficient vectors ai may not be known perfectly, as they are
subject to noise. Assume that we only know that ai ∈ Ei, where Ei are given
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Figure 3.2: The robust feasible set associated to a linear optimization problem
with row-wise spherical uncertainty on the coefficient matrix. The original fea-
sible set is a polyhedron, with boundary shown in blue line. The robust feasible
set is the intersection of robust half-space constraints, with boundaries shown
as red dotted lines.

ellipsoids. In robust optimization, we seek to minimize the original objective,
but we insist that each constraint be satisfied, irrespective of the choice of the
corresponding vector ai ∈ Ei. Based on the earlier result, we obtain the second-
order cone optimization problem

min
x

cTx : âTi x+ ‖RTi x‖2 ≤ bi, i = 1, . . . ,m,

where Ei = {âi + Riu : ‖u‖2 ≤ 1}. In the above, we observe that the feasible
set is smaller than the original one, due to the terms involving the l2-norms.

Figure (3.2) illustrates the kind of feasible set one obtains in a particular
instance of the above problem, with spherical uncertainties (that is, all the
ellipsoids are spheres, Ri = ρI for some ρ > 0). We observe that the robust
feasible set is indeed contained in the original polyhedron.

3.6.9 Robust separation

In lecture 5, we have discussed the problem of linear separation of two classes of
points. We revisit this example, assuming now that each point xi, i = 1, . . . ,m,
is only known to belong to an ellipsoid Ei = {x̂i + Riu : ‖u‖2 ≤ 1}, where
x̂i is the “nominal” value, and matrix Ri describes the ellipsoidal uncertainty
around it. The condition for an hyperplane H(w, b) = {x : wTx+b ≤ 0}, where
w ∈ Rn, w 6= 0, and b ∈ R, to separate the ellipsoids is

∀ i = 1, . . . ,m, ∀ x ∈ Ei : yi(w
Txi + b) ≥ 0,

which is equivalent to the second-order cone constraints

wT x̂i + b ≥ ‖RTi w‖2, i = 1, . . . ,m.

Consider the special case when all the ellipsoids are spheres of given radius ρ,
that is, Ri = ρI, i = 1, . . . ,m. Now look for the hyperplane that is maximally
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Figure 3.3: A linear classifier that separates data points with maximal spherical
uncertainty around them.

robust, that is, tolerates the largest amount of uncertainty in the data points
(as measured by ρ). Our problem writes

max
ρ,w,b

ρ : wT x̂i + b ≥ ρ‖w‖2, i = 1, . . . ,m.

Since the constraints are homogeneous in (w, b), we can without loss of generality
impose ρ‖w‖2 = 1. We then formulate the above problem as the LP

min
w,b
‖w‖2 : wT x̂i + b ≥ 1, i = 1, . . . ,m.

The quantity ρ = 1/‖w∗‖2 is called the margin of the optimal classifier, and
gives the largest amount of spherical uncertainty the data points can tolerate
before they become not separable.

3.7 Semidefinite optimization

3.7.1 Definition and standard forms

Definition. We say that a problem is a semidefinite optimization problem
(SDP) if it is a conic optimization problem of the form

min
x

cTx : Ax = b, x ∈ K,

where the cone K is a product of semidefinite cones of given size. The decision
variable x contains elements of matrices, and the constraint x ∈ K imposes
positive semidefiniteness on such matrices.

Standard form. Often, it is useful to think of x as a matrix variable. The
following standard form formalizes this.

First note that, without loss of generality, we may assume that K = Sn+.
Let us take an example with K = Sn1

+ × S
n2
+ to illustrate why. Indeed, the

condition that (X1, X2) ∈ Sn1
+ × Sn2

+ is the same as X := diag(X1, X2) ∈
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Sn1+n2
+ . Thus, by imposing that certain elements of the matrix X be zero

(those outside the diagonal blocks of size ni × ni), we can always reduce our
problem to the case when the cone K is the semidefinite cone itself, and the
matrix variable is constrained to be block diagonal (with block sizes n1, n2),
and live in that cone.

A standard form for the SDP model is thus

min
X∈Sn

TrCX : Tr(AiX) = bi, i = 1, . . . ,m, X � 0,

where C,A1, . . . , Am ∈ Sn, and b ∈ Rm. (In the above, we have used the fact
that a single affine equality constraint on a symmetric matrix variable X can be
represented as a scalar product condition of the form 〈A,X〉 = b, for appropriate
symmetric matrix A and scalar b.)

Inequality form. An alternate standard form, called the inequality standard
form, is

min
x

cTx : F0 +

n∑
i=1

xiFi � 0.

where matrices F0, . . . , Fn ∈ Sm. The constraint in the above problem is called
a linear matrix inequality (LMI). The above form is easily converted to the
previous standard form (I suggest you try as an exercise).

3.7.2 Special cases

As discussed above, we can use the above formalism to handle multiple LMIs,
using block-diagonal matrices. To illustrate this, we show that SDPs contain
LPs as a special case. Indeed, the LP

min
x

cTx : Ax ≤ b

is equivalent to the SDP

min
x

cTx : F (x) := diag(b1 − aT1 x, . . . , bm − aTmx) � 0,

where aTi is the i-th row of A. Thus, LPs are SDPs with a diagonal matrix in
the LMIs.

Similarly, SDPs contain SOCPs, by virtue of the following result, already
mentioned in lectue 5: for every x, t,

‖x‖2 ≤ t⇐⇒


t x1 . . . xn
x1 t 0
...

. . .

xn 0 t

 � 0.

Thus, a second-order cone constraint can be written as an LMI with an “arrow”
matrix.

3.7.3 Examples

SDP relaxation of boolean problems. In lecture 5, we have seen LP relax-
ations for boolean LPs, which are LPs with the added non-convex requirement
that the decision variable should be a boolean vector. This approach does not
easily extend to the case when the problem involves quadratics.
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To illustrate this, consider the max-cut problem. We are given a graph with
vertices labeled 1, . . . , n, with weights wij = wji for every pair of vertices (i, j).
We seek a cut (a subset S of V ) such that the total weight of all the edges that
leave S is maximized. This can be expressed as the quadratic boolean problem

max
x

1

2

∑
i<j

wij(1− xixj) : x ∈ {−1, 1}n.

The problem is NP-hard. In 1995, Goemans and Williamson introduced an
SDP relaxation (upper bound) of the problem, and showed that its value is
at most within 15% of the optimal value of the combinatorial problem above,
independent of problem size.

To explain the relaxation, let us embed the above problem into the more
general problem of maximizing a given quadratic form over a boolean set:

p∗ := max
x∈{−1,1}n

xTWx,

where W ∈ Sn is a given symmetric matrix. (As an exercise, try to cast the
max-cut problem into the above formalism.)

We can express the problem as

p∗ = max
X

TrWX : X � 0, Xii = 1, i = 1, . . . , n, rankX = 1.

Indeed, X is feasible for the above if and only X = xxT for some x ∈ {−1, 1}n,
in which case TrWX = xTWx.

Relaxing (meaning: ignoring) the rank constraint leads to the upper bound
p∗ ≤ d∗, where

d∗ := max
X

TrWX : X � 0, Xii = 1, i = 1, . . . , n.

The above is an SDP (in standard form). Nesterov has shown that, for arbitrary
matrices W , the above relaxation is within π/2 of the true value, that is, p∗ ≤
d∗ ≤ (π/2)p∗.

Non-convex quadratic optimization. The approach used above can be
applied to general non-convex quadratic optimization, which has the form

min
x

q0(x) : qi(x) ≤ 0, i = 1, . . . ,m,

where x ∈ Rn is the decision variable, and qi’s are quadratic functions, of the
form

qi(x) := xTQix+ 2qix+ pi, i = 1, . . . ,m,

with Qi ∈ Sn, qi ∈ Rn and pi ∈ R given. The above problem is not convex in
general (we have not imposed positive semi-definiteness on the Qi’s).

We note that qi(x) = Li(xx
T , x), with Li : Sn×Rn → R the affine functions:

Li(X,x) := TrXQi + 2qix+ pi, i = 1, . . . ,m.

We can express the problem as

min
X,x

L0(X,x) : Li(X,x) ≤ 0, i = 1, . . . ,m, X � 0, rank(X) = 1.

Dropping the rank constraint leads to an SDP relaxation (lower bound):

min
X,x

L0(X,x) : Li(X,x) ≤ 0, i = 1, . . . ,m, X � 0.

The above relaxation can be arbitrarily bad, but in some cases it is exact.
For example, in the case of a single inequality constraint (m = 1), the SDP
relaxation provides the exact value of the original non-convex problem.
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Stability analysis of uncertain dynamical systems. Consider a time-
varying dynamical system of the form

x(t+ 1) = A(t)x(t), t = 0, 1, 2, . . . (3.5)

with x(t) ∈ Rn the state vector, and A(t) ∈ Rn×n. We assume that all is known
about A(t) is that A(t) ∈ A = {A1, . . . , AL}, with Ai ∈ Rn×n, i = 1, . . . , L given
matrices. We say that the system is asymptotically stable if, for every initial
condition x(0) ∈ Rn, the resulting trajectory goes to zero: x(t)→ 0 as t→ +∞.
Note that ascertaining asymptotic stability of the above “switched” system is
hard in general, so we look for a tractable sufficient condition for asymptotic
stability.

Let us denote by ‖ · ‖ the largest singular value norm. Clearly, if for every
t ≥ 0, we have ‖A(t)‖ ≤ σ < 1 for some σ < 1, then ‖x(t + 1)‖2 ≤ σ‖x(t)‖2,
which shows that the state vector goes to zero at least as fast as σt. The norm
condition “‖A(t)‖ < 1 for every t” is conservative, since it implies that the state
decreases monotonically.

To refine the norm-based sufficient condition for asymptotic stability, we can
use scaling. For S ∈ Rn×n a given invertible matrix, we define x̄(t) := Sx(t). In
the new state space defined by x̄, the state equations become x̄(t+1) = Ā(t)x̄(t),
with Ā(t) := SA(t)S−1. The asymptotic stability of the system is independent
of the choice of S, since x̄(t) converges to zero if and only if x(t) does. However,
the norm-based sufficient condition for asymptotic stability is not independent
of the choice of S. Indeed, if we impose that condition on Ā(t), we obtain
‖SA(t)S−1‖ < 1. In turn, this condition writes2

A(t)TPA(t) ≺ P,

where P = STS � 0. (The original norm-based sufficient condition is recovered
with P = I.)

We conclude that the existence of P ∈ Sn such that

P � 0, ∀ i = 1, . . . , L : ATi PAi ≺ P

ensures the stability of the system (3.5), regardless of the choice of the trajectory
of the matrix A(t) ∈ A. The above condition is an LMI in matrix variable P .

Note that since for fixed P � 0, the set {A : ATPA ≺ P} is convex, requiring
that it contains the finite set A is the same as requiring that it contains its
convex hull. So the above condition also ensures stability of the system (3.5),
when A(t) is allowed to be any time-varying convex combination of the matrices
Ai, i = 1, . . . , L.

Also, note that when L = 1, the above condition turns out to be exact, and
equivalent to the condition that all the eigenvalues of the matrix A lie in the
interior of the unit circle of the complex plane. This is the basic result of the
so-called Lyapunov asymptotic stability theorem for linear systems.

3.8 More on non-convex quadratic optimization

3.8.1 More on rank relaxation.

Let us return to a problem involving (possibly non-convex) quadratic functions
only. We consider a maximization problem instead of minimization, as can be
done freely for non-convex problems:

p∗ := max
x

q0(x) : qi(x) ≤ 0, i = 1, . . . ,m, (3.6)

2Here, we use the fact that for a matrix A, the condition ‖A‖ < 1 is equivalent to ATA ≺ I
(try to show this).
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where x ∈ Rn is the decision variable, and qi’s are quadratic functions, of the
form

qi(x) := xTQix+ 2qix+ pi, i = 1, . . . ,m,

We have seen a rank-relaxation approach, which leads to an SDP relaxation
p∗ ≤ d∗, where

d∗ := max
X,x

L0(X,x) : Li(X,x) ≤ 0, i = 1, . . . ,m, X � 0,

where Li(X,x) := TrXQi + 2qix+ pi, i = 1, . . . ,m.
The rank relaxation for the general problem above can be arbitrarily poor in

quality (that his, the lower bound obtained this way is arbitrarily smaller than
the optimal value of the initial problem). However, when the constraints are
convex (Qi � 0), and the qi’s are all zero, then a result by Nemirovski, Roos
and Terlaky (1999) shows that

d∗

2 log(2mµ)
≤ p∗ ≤ d∗, µ := min(m, max

1≤i≤m
Rank(Ai)).

The measure µ of the quality of the approximation grows slowly with problem
size (and is independent of the number of variables). This generalizes the earlier
result by Goemans and Williamson (1994) and Nesterov (1998), which are valid
for special cases of the above problem. The bound above comes also with a
method to provide a sub-optimal solution with value guaranteed to be in the
interval [ d∗

2 log(2mµ) , d
∗].

3.8.2 Lagrange relaxation

There is an alternative approach to bounding the non-convex quadratic prob-
lem. This other approach is part of a very general class of relaxations, to be
discussed later, called Lagrange relaxations. We will also see later that, for
generic quadratic problems, the Lagrange relaxation and the rank relaxation
are essentially the same. It is however instructive to look into the Lagrange
relaxation approach now, as an independent approach.

The idea is that if, for a given m-vector λ ≥ 0, and scalar t, we have

∀ x : q0(x) ≤
m∑
i=1

λiqi(x) + t,

then for every x that is feasible for (3.6), the sum in the above is non-positive.
Hence, q0(x) ≥ t, so that t is an upper bound on our problem. The condition
above is easy to check, as it involves a single quadratic function: indeed, it is
equivalent to the LMI in (t, λ):(

Q0 q0

qT0 r0

)
�

m∑
i=1

λi

(
Qi qi
qTi ri

)
+

(
0 0
0 t

)
. (3.7)

Hence, the best upper bound that we can achieve using this approach is the
SDP

min
t,λ

t : (3.7), λ ≥ 0.

As noted before, the SDP above and the SDP obtained via rank-relaxation
in fact provide the same bound (provided some technical condition holds). We
will explore these ideas in more detail later.
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3.8.3 The S-lemma

This mysterious name corresponds to a special case of non-convex quadratic
optimization, where there is only a single constraint. (Refer to appendix B of
[BV] for more details.)

The problem bears the form

max
x

q0(x) : q1(x) ≤ 0,

where both q0, q1 are arbitrary quadratic functions. The S-lemma states that
if there exist a point x ∈ Rn such that q1(x) < 0, then the rank relaxation and
the (equivalent) Lagrange relaxation are both exact. The latter has the form

min
t,λ

t :

(
Q0 q0

qT0 r0

)
� λ

(
Q1 q1

qT1 r1

)
+

(
0 0
0 t

)
, λ ≥ 0. (3.8)

This shows in particular that the apparently non-convex problem of finding
the direction of maximal variance for a given covariance matrix Σ, is actually
convex. We have

max
x 6=0

xTΣx

xTx
= max
x : ‖x‖2=1

xTΣx = max
x : ‖x‖2≤1

xTΣx,

where the last inequality exploits the convexity of the quadratic function x →
xTΣx. The rank relaxation is

max
X

Tr ΣX : TrX = 1, X � 0.

The Lagrange relaxation yields (check this!)

min
t

t : tI � Σ.

As expected, both give the same bound, and that bound is exact.
The S-lemma has many applications, and we’ll visit some of them below.

3.9 Optimization over ellipsoids

There is a strong connection between positive-definite matrices and ellipsoids,
in the sense that optimization problems involving ellipsoids often reduce to (or
can be approximated by) semi-definite optimization problems. This is not sur-
prising, since ellipsoids are set defined by a single convex quadratic constraint.

3.9.1 Parametrizations of ellipsoids

A non-degenerate ellipsoid can be expressed as

E :=
{
x : (x− x̂)TP−1(x− x̂) ≤ 1

}
, (3.9)

where P � 0. An alternate parametrization is

E := {x = x̂+Ru : ‖Ru‖2 ≤ 1} , (3.10)

where R := P 1/2 � 0. A third parametrization is

E =
{
x : q(x) := xTQx+ 2qTx+ r ≤ 0

}
, (3.11)

where Q � 0 and r < qTQ−1q (otherwise, the ellipsoid has empty interior). We
have the correspondence P = Q−1, q = −P−1x̂.
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The parameters of the above representation have geometric interpretations.
Obviously, x̂ is the center of the ellipsoid. Furthermore, the eigenvalue de-
composition of P = UTΛU , with λ = diag(λ) � 0 and U orthogonal, can be
interpreted geometrically as follows. The transformation U , when applied to the
points in the ellipsoid, rotates them so that the ellipsoid has axes parallel to the
coordinate axes. Precisely, letting x̄ = U(x − x̂) allows to write the constraint
(x− x̂)TP−1(x− x̂) ≤ 1 as x̄TΛx̄ ≤ 1, which corresponds to an ellipsoid parallel
to the axes, with λi the semi-axis lengths.

You may wonder why we bother about different ways to describe ellipsoids.
The reason is precisely that some problems involving ellipsoids are convex when
using one parametrization, but may not using the others.

Often a measure of size of the ellipsoid is needed. We can measure the size
as the sum of the semi-axis lengths, that is TrP . Note that this measure can be
used to maximize or minimize the size, since it is linear. In terms of the other
two parametrizations, TrP = TrQ−1 = ‖R‖2F is convex in Q and R.

Alternatively, the volume can be used. The volume of the set described
by (3.10) is detR, so it can be maximized with the concave function P →
log detP . If one is interested in minimizing volume, then the last two parametriza-
tions (3.10) or (3.11) can be used, as now the volume is proportional to detQ−1

or log detR−1, and Q→ − log detQ is convex.

3.9.2 Examples

Consider the problem of checking wether a given ellipsoid E0 contains another
one, E1. We assume that both E0, E1 have non-empty interior. We use the
parametrization (3.11), with subscripts on the parameters (Q, q, r). The prob-
lem can be formulated as checking if the optimal value of the problem

p∗ := max
x∈E1

q0(x) = max
x
{q0(x) : q1(x) ≤ 0}

is less or equal to zero. Since E1 has non-empty interior, we can apply the
S-lemma. The condition (3.8), written with t = 0, yields the necessary and
sufficient condition for E1 ⊆ E0:(

Q0 q0

qT0 r0

)
� λ

(
Q1 q1

qT1 r1

)
, λ ≥ 0.

The above condition is easily shown to be sufficient: multiply both terms on the
left by zT and on the right by z, with z = (x, 1).

3.9.3 Maximum volume ellipsoid in a polyhedron.

We are given a polyhedron described by a set of affine inequalities

P = {x : aTi x ≤ bi, i = 1, . . . ,m}.

We seek an ellipsoid of minimum volume that contains P. We use the parametriza-
tion (3.10) for a candidate ellipsoid E , and formulate the condition P ⊆ E as

∀ i, ∀x : q(x) ≤ 1 =⇒ aTi x ≤ bi.

We can use the S-lemma to treat these conditions. An equivalent and more
direct way is to express the above as

∀ i, bi ≥ max
‖u‖2≤1

aTi (x̂+Ru) = aTi x̂+ ‖Rai‖2.
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We obtain the problem in the form

min
R

log detR−1 : ‖Rai‖2 + aTi x̂ ≤ bi, i = 1, . . . ,m.

The problem is not an SDP but is convex (and algorithms for SDPs can be
adapted to solve it).

Minimum trace ellipsoid containing points. We are given m points in
Rn, x1, . . . , xm. We seek to find a minimum-trace ellipsoid that contains all
the points. Since an ellipsoid is convex, containing the points is the same as
containing their convex hull.

Here, we use the parametrization (3.11). The condition for a candidate
ellipsoid to contain the points is

q(xi) = xTi Qxi + 2qTxi + r ≤ 0, i = 1, . . . ,m.

The above constraints on (Q, q, r) are affine. Hence the problem reduces to

min
Q

TrQ−1 : Q � 0, xTi Qxi + 2qTxi + r ≤ 0, i = 1, . . . ,m.

The above problem is convex, but not quite an SDP yet. We can introduce a
new matrix variable and use Schur complements, to express the above as

min TrX :

(
X I
I Q

)
� 0, xTi Qxi + 2qTxi + r ≤ 0, i = 1, . . . ,m.

Alternatively, the parametrization (3.9) can be used. One can also work with
volume as a measure of size. I suggest you try these variations as an exercise.

3.9.4 Minimum trace ellipsoid containing the sum of el-
lipsoids.

This is a variation on the problem examined in [BV,page 411].
We are given ellipsoids Ei, i = 1, . . . ,m, and seek a minimum-trace outer

ellipsoidal approximation E0 to their sum, which we define as

C := E1 ⊕ . . .⊕ Em =

{
m∑
i=1

xi : xi ∈ Ei, i = 1, . . . ,m

}
.

To simplify, assume that all the ellipsoids involved have the same center at 0,
and let us use parametrization (3.11), with qi = 0, ri = −1, i = 0, . . . ,m. The
condition C ⊆ E for a candidate zero-center ellipsoid E is equivalent to

∀ x = (x1, . . . , xm) : q0(

m∑
i=1

xi) ≤ 0 whenever qi(xi) ≤ 0, i = 1, . . . ,m.

We can apply Lagrange relaxation and obtain the sufficient condition: there
exist λ ≥ 0 such that

∀ x = (x1, . . . , xm) : q0(

m∑
i=1

xi) ≤
m∑
i=1

λiqi(xi).

With the notation M := [I, . . . , I] and Q(λ) := diag(λiQi)
m
i=1, and Pi = Q−1

i ,
i = 1, . . . ,m, we write the above in the equivalent form

MTQ0M � Q(λ).
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We can reduce the size of the matrices involved in this condition drastically.
Let us assume λ > 0. Using Schur complements, and with P0 = Q−1

0 , we
re-write the above as (

Q(λ) MT

M P0

)
� 0.

Using Schur complements again (albeit in the other direction!) we obtain P0 �
MQ(λ)−1MT . With τi = 1/λi, we obtain

P0 �
m∑
i=1

τiPi.

A minimum trace ellipsoid can be obtained by the SDP

min
P0,τ

TrP0 : P0 �
m∑
i=1

τiPi, τ ≥ 0.

3.9.5 Application: reachable sets for discrete-time dynam-
ical systems

Consider the discrete-time linear system

x(t+ 1) = Ax(t) +Bp(t), t = 0, 1, 2, . . .

where A ∈ Rn×n and B ∈ Rn×np . We assume that the initial condition x(0)
is known, while the signal p is considered to be noise, and is only known to be
norm-bounded, precisely ‖p(t)‖2 ≤ 1 for ever t ≥ 0. The goal of reachability
analysis is to come up with bounds on the state at a certain time T .

We can seek a minimum-trace ellipsoid that is guaranteed to contain x(T ),
irrespective of the values of the pertubation signal p(t) within its bounds.
By applying the recursion, we can express x(T ) as a linear combination of
p(0), . . . , p(T − 1):

x(T ) = Ax(0) +

T−1∑
t=0

AtBp(t).

The problem of finding the minimum trace ellipsoid that contains the state vec-
tor at time T is thus a direct application of the ellipsoid-sum problem discussed
previously.

For example, when x(0) = 0, the center of E0 can be shown to be zero, so
we set E0 = {x : xTQ0x ≤ 1}. With L(t) := AtB, L := [L(0), . . . , L(T − 1)],
we obtain the sufficient condition for E0 to contain the state vector at time T :

∃ λ ≥ 0 : ∀ p = (p(0), . . . , p(T − 1)), pTLTQ0Lp ≤ 1 +

T−1∑
t=0

λt(p(t)
T p(t)− 1).

The above is equivalent toDλ � LTQ0L,
∑T−1
t=0 λt ≤ 1, whereDλ = diag(λ0Inp

, . . . , λT−1Inp
).

3.10 Geometric Programming

3.10.1 Standard form

Monomials and posynomials. A monomial is a function f : Rn
++ → R,

with values f(x) = cxa11 . . . xann , where c > 0 and a ∈ Rn. A posynomial is a
non-negative combination (sum) of monomials. For example, 3.4x−0.3

1 x4
2 is a

monomial, x−2
1 + 3x2x

−π
4 is a posynomial, while x−2

1 − 3x2x
−π
4 is neither.
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Standard form of a GP. A geometric program (GP) is a problem of the
form

min
x

f0(x) : fi(x) ≤ 1, i = 1, . . . ,m, gi(x) = 1, i = 1, . . . , p

where f0, . . . , fm are posynomials, and g1, . . . , gp are monomials.

Convex representation. GPs are not convex, but a simple change of vari-
ables yi = log xi leads to an equivalent, convex formulation.

First consider a monomial equality constraint: g(x) = 1, with g(x) =
cxa11 . . . xann , c > 0, a ∈ Rn. Taking logarithms, the constraint can be written
as aT y = b := − log c. Hence, monomial (equality) constraints on x-variables
translate into affine (equality) constraints on the y-variables.

For a posynomial

f(x) =

K∑
k=1

ckx
a1,k
1 . . . x

an,k
n

the constraint f(x) ≤ 1 takes the form

F (y) := log(f(ey)) = log

(
K∑
k=1

ea
T
k y−bk

)
≤ 0,

where ak = (a1,k, . . . , an,k), bk = − log ck, k = 1, . . . ,K. Since F is a convex
function, the above constraint is convex.

We obtain that any GP can, after a logarithmic change of variables, be
equivalently expressed as a convex optimization problem of the form

min
y
F0(y) : Fi(y) ≤ 0, i = 1, . . . ,m, Ay = b,

where the functions Fi are of the form above, and the equality constraints
correspond to the monomial ones in the original problem.

3.10.2 Examples

A geometric problem. This example is taken from the aforementioned arti-
cle. Here we optimize the shape of a box-shaped structure with height h, width
w, and depth d. We have a limit on the total wall area 2(hw+ hd), and a limit
the floor area wd, as well as lower and upper bounds on the aspect ratios h/w
and w/d. Subject to these constraints, we wish to maximize the volume of the
structure, hwd. This leads to the problem

max
h,w,d

hwd : 2(hw + hd) ≤ Awall, wd ≤ Afloor, α ≤ h/w ≤ β, γ ≤ d/w ≤ δ.

Here d, h, and w are the optimization variables, and the problem parameters
are Awall (the limit on wall area), Aflr (the limit on floor area), and α, β, γ, δ
(the lower and upper limits on the wall and floor aspect ratios). This problem
can be cast as a GP. I suggest you try to put it in standard form.

Minimizing the spectral radius of a non-negative matrix. Assume
A ∈ Rn×n has non-negative entries, and is irreducible (meaning, (I + A)n−1

is component-wise positive). The Perron-Frobenius theorem states that A has a
real, positive eigenvalue λpf , (not necessarily unique) such that λpf ≥ |λi| for all
other (possibly complex) eigenvalues λi. Hence, λpf is equal to spectral radius
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of the matrix A and is a measure of rate of growth or decay of Ak as k → ∞.
The value λpf is called the Perron-Frobenius eigenvalue of A.

The Perron-Frobenius eigenvalue can be found using an optimization prob-
lem as follows:

λpf(A) = min
λ,v

λ : Av ≤ λv, v > 0

The component-wise inequality Av ≤ λv can be expressed as a set of posynomial
inequalities in the elements of A, v, and λ, as:∑

j

Aijvj ≤ λvi, i = 1, . . . , n.

In many applications, the goal is to minimize λpf(A(x)) where elements of
A(x) are given posynomials in decision variables x > 0. We can formulate this
problem as a GP:

min λ :
∑
j

(A(x))ijvj
λvi

≤ 1, i = 1, . . . ,m,

x > 0, v > 0

As a specific application, consider a model of population dynamics of bac-
teria. Let p(t) = (p1(t), . . . , p4(t)) be a vector that describes the distribution of
the population of bacteria, with pi(t) the population at time t of bacteria that
is between i− 1 and i hours old. We model the change in population over time
by p(t+ 1) = Ap(t) where A is given by:

A =


b1 b2 b3 b4
s1 0 0 0
0 s2 0 0
0 0 s3 0


Here bi > 0 and 0 < si < 1 represent the birthrate and the survival rates during
the ith time period. In the above model, we assumed that no bacteria lives more
than four hours. Notice that the A matrix is non-negative. Model the birthrates
and survival rates by:

bi = γic
α1
1 cα2

2 , si = δic
β1

1 cβ2

2 , i = 1, . . . , 4

where c1, c2 represent some environmental conditions that can be controlled (eg.
concentration of a chemical), α1, α2, β1, β2, γi, δi are given constants. This
model is frequently used in chemistry due to its simplicity. The constants can
be found, for example, by taking logarithms in the above equations and then
using least-squares estimation.

Our goal is to devise the concentrations c1, c2 so that the population of
bacteria is depleted as fast as possible, while having constraints on the amounts
in c1, c2. The decay rate of the population is proportional to the rate of decay of
Ak, where A is a non-negative matrix. Hence, we can use the result on Perron-
Frobenius eigenvalue, and formulate an optimization problem as follows:

minλ,s,v,c λ
s.t. b1v1 + b2v2 + b3v3 + b4v4 ≤ λv1,

s1v1 ≤ λv1

s2v2 ≤ λv3

s3v3 ≤ λv4
1
2 ≤ ci ≤ 2, bi = γic

α1
1 cα2

2 , si = δic
β1

1 cβ2

2 , i = 1, 2
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With appropriate scaling of the above equations and inequalities, the prob-
lem can be formulated as a GP. The Perron-Frobenius theory is also used in
Markov chains, where the matrix representing transition probabilities to the
states is non-negative.

Power control in communications. We have n transmitters, labeled 1, . . . , n,
which transmit at (positive) power levels Pi, i = 1, . . . , n, which are the vari-
ables in our power control problem.We also have n receivers, labeled 1, . . . , n;
receiver i is meant to receive the signal from transmitter i. The power received
from transmitter j, at receiver i, is given by GijPj . Here Gij , which is positive,
represents the path gain from transmitter j to receiver i. The signal power at
receiver i is GiiPi, and the interference power at receiver i is

∑
k 6=iGikPk.

The noise power at receiver i is given by σi. The signal to interference and
noise ratio (SINR) of the i-th receiver/transmitter pair is given by

Si =
GiiPi

σi +
∑
k 6=iGikPk

.

We require that the SINR of any receiver/transmitter pair is at least a given
threshold Smin, and we impose upper and lower bounds onthe transmitter pow-
ers. The problem of minimizing the total transmitter power, subject to these
constraints, can be expressed as

min
P

n∑
i=1

Pi : Pmin ≤ P ≤ Pmax,
σi +

∑
k 6=iGikPk

GiiPi
≤ 1/Smin, i = 1, . . . , n.

This allows to solve the power control problem via GP.
Of course, the above problem can be solved as an LP, but the GP formula-

tion allows us to handle the more general case in which the receiver interference
power is any posynomial function of the powers. For example, interference
contributions from intermodulation products created by nonlinearities in the
receivers typically scale as polynomials in the powers. Indeed, third order inter-
modulation power from the first and second transmitted signals scales as P1P

2
2

or P 2
1P2; if terms like these are added to the interference power, the power

allocation problem above is still a GP.
As an example of a non-trivial extension, where the LP approach fails but

the GP model still works, is as follows3. Ignore the receiver noise, and assume
that the power received from transmitter j to receiver i is GijFjPj , where Fj is
a random variable that is exponentially distributed, with unit mean. We would
like now to ensure that the outage probabilities

Oi := Prob

GiiFiPi ≤ α∑
j 6=i

GijFjPj


are low, where α > 0 is a given threshold. (This ensures a “quality of service”,
or QoS, constraint.) Small values for Oi’s mean that the signal powers have a
low probability to be small with respect to the interference powers. It turns
out that, under the assumption that the Fi’s are independent and exponentially
distibuted, the outage probabilities have the following closed-form expression4:

Oi = 1−Πj 6=i
1

1 + αgijPj/Pi
, gi := Gij/Gii.

3See http://www.stanford.edu/~boyd/papers/outage.html.
4The proof is elementary, look at Prob(z1 >

∑n
i=2 zj) when zj ’s are independent and

exponentially distributed.
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Using this, we can minimize the total power subject that each transmitter/receiver
pair has an outage probability level less than ε via the problem

min
P

P1 + . . .+ Pn : P > 0, (1− ε)Πj 6=i(1 + αgijPj/Pi) ≤ 1, i = 1, . . . , n,

which is a GP.

3.10.3 Generalized geometric programming

Several extensions exist for GPs, and the ones below can be cast as GPs (with
additional variables and constraints).

Fractional powers of posynomials. Let f1, f2 be two posynomials, and let
αi ≥ 0, i = 1, 2. A constraint such as

f1(x)α1 + f2(x)α2 ≤ 1

is not a posynomial (unless αi’s are integers). However, we can represent it in
GP-compatible format, as

tα1
1 + tα2

2 ≤ 1, t−1
i fi(x) ≤ 1, i = 1, 2.

Composition. Let g be a non-decreasing posynomial (all exponents of g are
≥ 0). If f1, . . . , fK ’s are posynomials, then g ◦ f is not a posynomial in general.
The constraint

g(f1(x), . . . , fK(x)) ≤ 1

can be represented as

g(t1, . . . , tK) ≤ 1, t−1
i fi(x) ≤ 1, i = 1, . . . ,K.

Maximum of posynomials. Likewise, we can cope with max(f1, f2) where
fi’s are posynomials, using the representation

ti ≤ 1, t−1
i fi(x) ≤ 1, i = 1, 2.

Generalized posynomials. Generalized posynomials are functions obtained
from posynomials by composition with non-decreasing posynomials, addition,
maximum and multiplication. As we have seen, such functions can be handled
by GPs.



Chapter 4

Duality

4.1 Weak Duality

4.1.1 Primal problem

In this section, we consider a possibly non-convex optimization problem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m, (4.1)

where the functions f0, f1, . . . , fm We denote by D the domain of the problem
(which is the intersection of the domains of all the functions involved), and by
X ⊆ D its feasible set.

We will refer to the above as the primal problem, and to the decision variable
x in that problem, as the primal variable. One purpose of Lagrange duality is
to find a lower bound on a minimization problem (or an upper bounds for a
maximization problem). Later, we will use duality tools to derive optimality
conditions for convex problems.

4.1.2 Dual problem

Lagrangian. To the problem we associate the Lagrangian L : Rn×Rm → R,
with values

L(x, λ) := f0(x) +
m∑
i=1

λifi(x)

The variables λ ∈ Rm, are called Lagrange multipliers.
We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded

below by L(x, λ):

∀ x ∈ X , ∀ λ ∈ Rm
+ : f0(x) ≥ L(x, λ). (4.2)

The Lagrangian can be used to express the primal problem (4.1) as an un-
constrained one. Precisely:

p∗ = min
x

max
λ≥0, ν

L(x, λ), (4.3)

where we have used the fact that, for any vectors f ∈ Rm, we have

max
λ≥0

λT f =

{
0 if f ≤ 0
+∞ otherwise.

49
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Lagrange dual function. We then define the Lagrange dual function (dual
function for short) the function

g(λ) := min
x
L(x, λ).

Note that, since g is the pointwise minimum of affine functions (L(x, ·) is affine
for every x), it is concave. Note also that it may take the value −∞.

From the bound (4.2), by minimizing over x in the right-hand side, we obtain

∀ x ∈ X , ∀ λ ≥ 0 : f0(x) ≥ min
x′
L(x′, λ, ) = g(λ),

which, after minimizing over x the left-hand side, leads to the lower bound

∀ λ ∈ Rm
+ , ν ∈ Rp : p∗ ≥ g(λ).

Lagrange dual problem. The best lower bound that we can obtain using
the above bound is p∗ ≥ d∗, where

d∗ = max
λ≥0, ν

g(λ).

We refer to the above problem as the dual problem, and to the vector λ ∈ Rm

as the dual variable. The dual problem involves the maximization of a concave
function under convex (sign) constraints, so it is a convex problem. The dual
problem always contains the implicit constraint λ ∈ dom g.

We have obtained:

Theorem 3 (Weak duality) For the general (possibly non-convex) problem (4.1),weak
duality holds: p∗ ≥ d∗.

Case with equality constraints. If equality constraints are present in the
problem, we can represent them as two inequalities. It turns out that this leads
to the same dual, as if we would directly use a single dual variable for each
equality constraint, which is not restricted in sign. To see this, consider the
problem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
hi(x) = 0, i = 1, · · · , p.

We write the problem as

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
hi(x) ≤ 0, −hi(x) ≤ 0, i = 1, · · · , p.

Using a mulitplier ν±i for the constraint ±hi(x) ≤ 0, we write the associated
Lagrangian as

L(x, λ, ν+, ν−) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

ν+
i hi(x) +

p∑
i=1

ν−i (−hi(x))

= f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

where ν := ν+ − ν− does not have any sign constraints.
Thus, inequality constraints in the original problem are associated with sign

constraints on the corresponding multipliers, while the multipliers for the equal-
ity constraints are not explicitly constrained.
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4.1.3 Geometric interpretation

Assume that there is only one inequality constraint in (4.1) (m = 1), and let

G := {(f1(x), f0(x)) : x ∈ Rn} .

We have
p∗ = min

u,t
t : (u, t) ∈ G, u ≤ 0.

and
g(λ) = min

u,t
(λ, 1)T (u, t) : (u, t) ∈ G.

If the minimum is finite, then the inequality (λ, 1)T (u, t) ≥ g(λ) defines a sup-
porting hyperplane, with slope −λ, of G at (u, t). (See Figs. 5.3 and 5.4 in
[BV,p.233].)

4.1.4 Minimax inequality

Weak duality can also be obtained as a consequence of the following minimax
inequality, which is valid for any function φ of two vector variables x, y, and any
subsets X , Y:

max
y∈Y

min
x∈X

φ(x, y) ≤ min
x∈X

max
y∈Y

φ(x, y). (4.4)

To prove this, start from

∀ x, y : min
x′∈X

φ(x′, y) ≤ max
y′∈Y

φ(x, y′).

and take the minimum over x ∈ X on the right-hand side, then the maximum
over y ∈ Y on the left-hand side.

Weak duality is indeed a direct consequence of the above. To see this, start
from the unconstrained formulation (4.3), and apply the above inequality with
φ = L the Lagrangian of the original problem, and y = λ the vector of Lagrange
multipliers.

Interpretation as a game. We can interpret the minimax inequality result in
the context of a one-shot, zero-sum game. Assume that you have two players A
and B, where A controls the decision variable x, while B controls y. We assume
that both players have full knowledge of the other player’s decision, once it is
made. The player A seeks to minimize a payoff (to player B) L(x, y), while
B seeks to maximize that payoff. The right-hand side in (4.4) is the optimal
pay-off if the first player is required to play first. Obviously, the first player can
do better by playing second, since then he or she knows the opponent’s choice
and can adapt to it.

4.1.5 Examples

Linear optimization. Consider the LP in standard inequality form

p∗ = min
x

cTx : Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm, and the inequality in the constraint Ax ≤ b is
interpreted component-wise.

The Lagrange function is

L(x, λ) = cTx+ λT (Ax− b)
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and the corresponding dual function is

g(λ) = min
x
L(x, λ) =

{
−bTλ if ATλ+ c = 0
+∞ otherwise.

The dual problem reads

d∗ = max
λ

g(λ) = max
λ
−bTλ : λ ≥ 0, ATλ+ c = 0.

The dual problem is an LP in standard (sign-constrained) form, just as the
primal problem was an LP in standard (inequality) form.

Weak duality implies that

cTx+ bTλ ≥ 0

for every x, λ such that Ax ≤ b, ATλ = −c. This property can be proven
directly, by replacing c by −ATλ in the left-hand side of the above inequality,
and exploiting Ax ≤ b and λ ≥ 0.

We can also consider an LP in standard form:

p∗ = min
x

cTx : Ax = b, x ≥ 0.

The equality constraints are associated with a dual variable ν that is not con-
strained in the dual problem.

The Lagrange function is

L(x, λ, ν) = cTx− λTx+ νT (b−Ax)

and the corresponding dual function is

g(λ) = min
x
L(x, λ, ν) =

{
bT ν if c = AT ν + λ
+∞ otherwise.

The dual problem reads

d∗ = max
λ≥0, ν

g(λ, ν) = max
ν

bT ν : c ≥ AT ν.

This is an LP in inequality form.

Minimum Euclidean distance problem Consider the problem of minimiz-
ing the Euclidean distance to a given affine space:

min
1

2
‖x‖22 : Ax = b, (4.5)

where A ∈ Rp×n, b ∈ Rp. We assume that A is full row rank, or equivalently,
AAT � 0. The Lagrangian is

L(x, ν) =
1

2
‖x‖22 + νT (Ax− b),

and the Lagrange dual function is

g(ν) = min
x
L(x, ν) = min

x

1

2
‖x‖22 + νT (Ax− b).

In this example, the dual function can be computed analytically, using the
optimality condition ∇xL(x, ν) = x+AT ν = 0. We obtain x = −AT ν, and

g(ν) = −1

2
νTAAT ν − bT ν.
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The dual problem expresses as

d∗ = max
ν

g(ν) = max
ν
−1

2
νTAAT ν − bT ν.

The dual problem can also be solved analytically, since it is unconstrained (the
domain of g is the entire space Rp). We obtain ν∗ = −(AAT )−1b, and

d∗ =
1

2
bT (AAT )−1b.

We have thus obtained the bound p∗ ≥ d∗.

A non-convex boolean problem For a given matrix W = WT � 0, we
consider the problem

p∗ = max
x

xTWx : x2
i ≤ 1, i = 1, . . . , n.

In this maximization problem, Lagrange duality will provide an upper bound on
the problem. This is called a “relaxation”, as we go above the true maximum,
as if we’d relax (ignore) constraints.

The Lagrangian writes

L(x, λ) = xTWx+

n∑
i=1

λi(1− x2
i ) = TrDλ + xT (W −Dλ)x.

where Dλ := diag(λ).
To find the dual function, we need to maximize the Lagrangian with respect

to the primal variable x. We express this problem as

g(λ) = max
x
L(x, λ) = min

t
t : ∀ x, t ≥ TrDλ + xT (W −Dλ)x.

The last inequality holds if and only if(
Dλ −W 0

0 t−TrDλ

)
� 0.

Hence the dual function is the optimal value of an SDP in one variable:

g(λ) = min
t

t :

(
Dλ −W 0

0 t−TrDλ

)
� 0.

We can solve this problem explicitly:

g(λ) =

{
TrDλ if Dλ �W
−∞ otherwise.

The dual problem involves minimizing (that is, getting the best upper bound)
the dual function over the variable λ ≥ 0:

d∗ = min
λ

λT1 : diag(λ) �W.

The above is an SDP, in variable λ. Note that λ > 0 is automatically enforced
by the PSD constraint.

Geometric interpretation: The Lagrange relaxation of the primal problem
can be interpreted geometrically, as follows. For t > 0, λ > 0, consider the
ellipsoids

Et =
{
x : xTWx ≤ t

}
, Eλ =

{
x : xTDλx ≤ TrDλ

}
.

The primal problem amounts to find the smallest t ≥ 0 for which the ellipsoid
Et contains the ball B∞ := {x : ‖x‖∞ ≤ 1}. Note that for every λ > 0, Eλ
contains the ball B∞. To find an upper bound on the problem, we can find the
smallest t for which there exist λ > 0 such that Et ⊇ Eλ. The latter condition
is precisely diag(λ) �W , t ≥ TrDλ.
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Figure 4.1: Geometric interpretation of dual problem in the boolean quadratic
problem.

4.1.6 Semidefinite optimization problem

Consider the SDP in standard form:

max
X
〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, λmin(−X) ≤ 0, (4.6)

where we have used the minimum eigenvalue function

λmin(Z) := min
Y
〈Y,Z〉 : Y � 0, TrY = 1 (4.7)

to represent the positive semi-definiteness condition X � 0 in the SDP. The
proof of this result can be obtained by first showing that we can without loss of
generality assume that Z is diagonal, and noticing that we can then restrict Y
to be diagonal as well. Note that the above representation proves that λmin is
concave, so problem (4.11) is convex as written.

The Lagrangian for the problem above is

L(X,λ, ν) = 〈C,X〉+

m∑
i=1

νi(bi − 〈Ai, X〉) + λ · λmin(−X).

The dual function for this maximization problem is

g(λ, ν) := max
X
L(X,λ, ν).
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Consider the following subproblem, in which R = RT and λ ≥ 0 are given:

G(R, λ) := max
X
〈R,X〉+ λλmin(−X)

= max
X

min
Y�0,TrY=1

〈R− λY,X〉 [eqn. (4.12)]

= max
X

min
Y�0,TrY=λ

〈R− Y,X〉 [replace Y with λY ]

≥ G(R, λ) := min
Y�0,TrY=λ

min
X
〈R− Y,X〉 [weak duality].

The lower bound on G writes

G(R, λ) =

{
0 if TrR = λ ≥ 0, R � 0,
+∞ otherwise.

This shows that G(R, λ) itself is +∞ if (R, λ) is not in the domain of G. Con-
versely, if R � 0, TrR = λ, then the lower bound G(R, λ) = 0 is attained by
choosing X = I, the identity matrix. Thus, G = G.

Coming back to the Lagrangian, we need to apply our result to R = C −∑m
i=1 νiAi. The dual function is

g(λ, ν) =

{
0 if R := C −

∑m
i=1 νiAi � 0, TrR = λ ≥ 0,

+∞ otherwise.

We obtain the dual problem

d∗ = max
λ,ν,R

νT b : R = C −
m∑
i=1

νiAi � 0, TrR = λ ≥ 0,

or, after elimination of λ, and noticing that R � 0 implies TrR ≥ 0:

d∗ = max
ν

νT b : C �
m∑
i=1

νiAi (4.8)

The dual problem is also an SDP, in standard inequality form.

4.2 Strong duality

4.2.1 Definitions

Duality gap. We have seen how Lagrange duality allows to form a convex
optimization problem that provides a lower bound on the original (primal) prob-
lem. The duality gap is the non-negative number p∗ − d∗.

We say that strong duality holds for the problem if the duality gap is zero:
p∗ = d∗.

4.2.2 A strong duality theorem

Slater’s condition. We say that the problem satisfies Slater’s condition if it
is strictly feasible, that is:

∃ x0 ∈ D : fi(x0) < 0, i = 1, . . . ,m, hi(x0) = 0, i = 1, . . . , p.

We can replace the above by a weak form of Slater’s condition, where strict
feasibility is not required whenever the function fi is affine.

We then have the
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Theorem 4 (Strong duality via Slater condition) If the primal problem
is convex, and satisfies the weak Slater’s condition, then strong duality holds,
that is, p∗ = d∗.

In particular, we conclude that the duality gap of a linear optimization
problem is zero whenever it is feasible. (If not, the gap is also zero, as in fact
p∗ = d∗ = +∞.)

Note that there are many other similar results that guarantee a zero duality
gap. For example:

Theorem 5 (Linear optimization problems) If the functions f0, . . . , fm, h1, . . . , hp
are all affine, then the duality gap is always zero, provided one of the primal or
dual problems is feasible.

4.2.3 Examples

Minimum Euclidean distance problem. The minimum distance to an
affine set (4.5) is convex, and satisfies Slater’s condition (in fact, strong du-
ality always holds for this convex quadratic problem). Hence, we know that
p∗ = d∗. This allows us to compute the optimal value of the problem analyti-
cally: p∗ = d∗ = 1

2b
T (AAT )−1b.

We can also find a corresponding optimal point: for every ν, the point
x(ν) = −AT ν achieves the minimum in the definition of the dual function
g(ν). Let us set x∗ := x(ν∗), where ν∗ = −(AAT )−1b denotes the optimal
dual variable. The point x∗ = AT (AAT )−1b is optimal for the primal problem.
Indeed, it is feasible, since Ax∗ = ATA(AAT )−1b = b, and its objective value
equals to the optimal value (1/2)‖x∗‖22 = 1

2b
T (AAT )−1b = d∗ = p∗. Hence, x∗

is optimal, as claimed.

Linear optimization problem. The strong duality theorem applies (without
qualification), which shows that any LP in inequality form

p∗ = min
x

cTx : Ax ≤ b,

can be equivalently written in the dual form, as an LP:

p∗ = d∗ = max
λ
−bTλ : λ ≥ 0, ATλ+ c = 0.

The above LP is in standard form, with the number of constraints and variables
exchanged.

Duality is another way to convert any LP in inequality form into a stan-
dard form, and vice-versa. (The other method, seen in lecture 5, is via the
introduction of new variables.)

Semidefinite optimization problem. Return to the SDP (4.11) and its
dual (4.13). Here, strong duality does not necessarily hold. If, however, Slater’s
condition holds, that is, if there exist X � 0 that satisfies the constraints of the
primal problem, then the duality gap is zero.

Observe the phenomenon observed in the case of LPs. The problem we
started with was in standard form, and the dual is the inequality form.

Support vector machine classification. Return to the example seen in
lecture 5, involved a binary classification problem. Givenm data points xi ∈ Rn,
each of which is associated with a label yi ∈ {−1, 1}, the problem is to find a
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hyperplane that separates, as much as possible, the two classes. Let us denote
Z = [y1x1, . . . , ymxm] ∈ Rn×m.

We assume that the classes are linearly separable, in the sense that there
exists w ∈ Rn, w 6= 0, and b ∈ R, such that

yi(w
Txi + b) ≥ 0, i = 1, . . . ,m.

We search for a robust hyperplane, in the sense that the above hold for any data
point within a sphere of radius ρ, around the given data points xi. The robust
separability condition reads

yi(w
Txi + b) ≥ ρ‖w‖2, i = 1, . . . ,m.

By homogeneity, we can always assume that (w, b) are chosen so that ρ‖w‖2 = 1.
Thus, the largest radius attainable, called the margin, is ρ∗ = 1/‖w∗‖2, with
w∗ a minimizer for

min
w,b
‖w‖2 : yi(w

Txi + b) ≥ 1, i = 1, . . . ,m,

or, more compactly:
min
w,b
‖w‖2 : ZTw + by ≥ 1.

The above is a QP (after squaring the objective), so we know that strong duality
holds.

The Lagrange function is

L(w, b, λ) = (1/2)‖w‖22 + λT (1− ZTw − by).

(We squared the objective without harm, for simplicity of the next derivation.)
The dual function can be explicitly computed as follows. Taking the derivative
with respect to w yields w = Zλ, while zeroing out the derivative with respect
to b leads to λT y = 0. Hence:

g(λ) = min
w,b
L(w, b, λ) =

{
λT1− 1

2‖Zλ‖
2
2 if λT y = 0,

+∞ otherwise.

Making the implicit constraints λ ∈ dom g explicit leads to the dual problem

d∗ = max
λ

λT1− 1

2
‖Zλ‖22 : λ ≥ 0, λT y = 0.

This is also a QP, just like the primal problem.
We can interpret the dual geometrically, after massaging it a bit. Scale the

variable as λ = αµ, with α > 0, and µT y = 0, µ ≥ 0, and optimize over α > 0.
The optimization problem over α is:

max
α>0

α(µT1)− α2

2
‖Zµ‖22 =

(1Tµ)2

2‖Zµ‖22
.

Note that the numerator cannot be zero, as long as the data is separable, and
µT y = 0, µ ≥ 0.

This shows that the dual problem can be expressed as

d∗ = max
µ

(1Tµ)2

2‖Zµ‖22
: µ ≥ 0, µT y = 0.

Assume that the first k (k < m) first indices in y are +1, and the rest −1. The
problem reads

d∗ = max
µ

(1Tµ)2

2‖Zµ‖22
: µ ≥ 0,

k∑
i=1

µi =

m∑
i=k+1

µi.
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We now use homogeneity of the objective, as follows. Without loss of gen-
erality, we can impose the constraint

∑
i≤k µi =

∑
i>k µi = 1. Then, 1Tµ = 2,

and

d∗ = max
µ

2

‖Zµ‖22
: µ ≥ 0,

k∑
i=1

µi =

m∑
i=k+1

µi.

The margin 1/d∗ = 1/p∗ = ρ∗ is equal to the inverse of the above:

ρ∗ = 1/d∗ = min
µ

(1/2)‖
k∑
i=1

µixi−
m∑

i=k+1

µixi‖2 :

k∑
i=1

µi =

m∑
i=k+1

µi = 1, µ ≥ 0.

The above problem can be interpreted as the minimum Euclidean distance be-
tween the convex hulls of the two classes. The inverse of the dual (or primal)
value is the margin ρ∗, the largest spherical perturbation that the data can tol-
erate before becoming not separable. Strong duality implies that the margin is
half the distance between the two convex hulls.

4.3 Strong duality for convex problems

4.3.1 Primal and dual problems

In this section, we consider a convex optimization problem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
hi(x) = 0, i = 1, · · · , p,

(4.9)

where the functions f0, f1, . . . , fm are convex, and h1, . . . , hp are affine. We
denote by D the domain of the problem (which is the intersection of the domains
of all the functions involved), and by X ⊆ D its feasible set.

To the problem we associate the Lagrangian L : Rn ×Rm ×Rp → R, with
values

L(x, λ, ν) := f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

The dual function is g : Rm ×Rp → R, with values

g(λ, ν) := min
x
L(x, λ, ν).

The associated dual problem is

d∗ = max
λ≥0, ν

g(λ, ν).

4.3.2 Strong duality via Slater’s condition

Duality gap and strong duality. We have seen how weak duality allows to
form a convex optimization problem that provides a lower bound on the original
(primal) problem, even when the latter is non-convex. The duality gap is the
non-negative number p∗ − d∗.

We say that strong duality holds for problem (4.9) if the duality gap is zero:
p∗ = d∗.
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Slater’s condition. We say that the problem satisfies Slater’s condition if it
is strictly feasible, that is:

∃ x0 ∈ D : fi(x0) < 0, i = 1, . . . ,m, hi(x0) = 0, i = 1, . . . , p.

We can replace the above by a weak form of Slater’s condition, where strict
feasibility is not required whenever the function fi is affine.

We then have the

Theorem 6 (Strong duality via Slater condition) If the primal problem (4.9)
is convex, and satisfies the weak Slater’s condition, then strong duality holds,
that is, p∗ = d∗.

Note that there are many other similar results that guarantee a zero duality
gap. For example:

Theorem 7 (Quadratic convex optimization problems) If f0 is quadratic
convex, and the functions f1, . . . , fm, h1, . . . , hp are all affine, then the duality
gap is always zero, provided one of the primal or dual problems is feasible. In
particular, strong duality holds for any feasible linear optimization problem.

A counterexample. Convexity alone is not enough to guarantee strong du-
ality. Consider for example the convex problem

min
x,y>0

e−x : x2/y ≤ 0,

with variables x and y, and domain D = {(x, y) | y > 0}. We have p∗ = 1. The
Lagrangian is L(x, y, λ) = e−x + λx2/y, and the dual function is

g(λ) = inf
x,y>0

(e−x + λx2/y) =

{
0 λ ≥ 0
−∞ λ < 0,

so we can write the dual problem as

d∗ = max
λ

0 : λ ≥ 0

with optimal value d? = 0. The optimal duality gap is p? − d? = 1. In this
problem, Slater’s condition is not satisfied, since x = 0 for any feasible pair
(x, y).

4.3.3 Geometric interpretation

Assume that there is only one inequality constraint in (4.9) (m = 1), and let

A := {(u, t) : ∃ x ∈ Rn, u ≥ f1(x), t ≥ f0(x)} .

The problem is feasible if and only if A intersects the left-half plane. Fur-
thermore, we have

p∗ = min
u,t

t : (u, t) ∈ A, u ≤ 0.

and
g(λ) = min

u,t
(λ, 1)T (u, t) : (u, t) ∈ A.

If the minimum is finite, then the inequality (λ, 1)T (u, t) ≥ g(λ) defines a sup-
porting hyperplane, with slope −λ, of A at (u, t). (See Figs. 5.3 and 5.4 in
[BV,p.233].)

If the problem is convex, then A is also convex. If Slater’s condition holds,
then the interior of A intersects the left-half plane, and strong duality holds.
(See Fig. 5.6 in [BV,p.236].)
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4.4 Examples

4.4.1 Minimum Euclidean distance problem

The minimum distance to an affine set mentioned in lecture 11 is

min
1

2
‖x‖22 : Ax = b, (4.10)

where A ∈ Rp×n, b ∈ Rp. The problem is convex, and satisfies Slater’s condition
(in fact, strong duality always holds for this convex quadratic problem). Hence,
we know that p∗ = d∗. This allows us to compute the optimal value of the
problem analytically: p∗ = d∗ = 1

2b
T (AAT )−1b.

We can also find a corresponding optimal point: for every ν, the point
x(ν) = −AT ν achieves the minimum in the definition of the dual function
g(ν). Let us set x∗ := x(ν∗), where ν∗ = −(AAT )−1b denotes the optimal
dual variable. The point x∗ = AT (AAT )−1b is optimal for the primal problem.
Indeed, it is feasible, since Ax∗ = ATA(AAT )−1b = b, and its objective value
equals to the optimal value (1/2)‖x∗‖22 = 1

2b
T (AAT )−1b = d∗ = p∗. Hence, x∗

is optimal, as claimed.

4.4.2 Linear optimization problem

Consider the LP in inequality form:

p∗ = min
x

cTx : Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm. Assume that the above problem is feasible, so that
strong duality holds. Then the problem can be equivalently written in the dual
form, as an LP:

p∗ = d∗ = max
λ
−bTλ : λ ≥ 0, ATλ+ c = 0.

The above LP is in standard form, with the number of constraints and variables
exchanged.

Duality is another way to convert any LP in inequality form into a stan-
dard form, and vice-versa. (The other method, seen in lecture 5, is via the
introduction of new variables.)

4.4.3 Support vector machine classification

Return to the example seen in lecture 5, which involved a binary classification
problem. Given m data points xi ∈ Rn, each of which is associated with a label
yi ∈ {−1, 1}, the problem is to find a hyperplane that separates, as much as
possible, the two classes. Let us denote Z = [y1x1, . . . , ymxm] ∈ Rn×m.

Ideally, we would like to minimize the number of errors on the training set
(xi, yi)

m
i=1. This is hard as it involves a non-convex function. An upper bound

on the number of errors is provided by the so-called hinge loss function

L(w, b) :=

m∑
i=1

(1− yi(wTxi + b))+.

We’d also like to control robustness of the resulting linear classifier, and at the
same time guarantee unicity. It turns out that these objectives can be achieved
via the following problem:

min
w,b

C · L(w, b) +
1

2
‖w‖22.



4.4. EXAMPLES 61

where C > 0 is a parameter that controls the trade-off between robustness and
performance on the training set (a greater C encourages performance at the
expense of robustness).

The above can be written as a QP, by introducing slack variables:

min
w,b,v

1

2
‖w‖22 + C

m∑
i=1

vi : v ≥ 0, yi(w
Txi + b) ≥ 1− vi, i = 1, . . . ,m,

or, more compactly:

min
w,b,v

1

2
‖w‖22 + CvT1 : v ≥ 0, v + ZTw + by ≥ 1.

The corresponding Lagrangian is

L(w, b, λ, µ) =
1

2
‖w‖22 + CvT1 + λT (1− v − ZTw − by)− µT v,

where µ ∈ Rm corresponds to the sign constraints on v.
The dual function is given by

g(λ, µ) = min
w,b
L(w, b, λ, µ).

We can readily solve for w by taking derivatives, which leads to w(λ, µ) = Zλ.
Taking derivatives with respect to v yields the constraint C1 = λ + µ, while
taking derivatives with respect to b leads to the dual constraint λT y = 0. We
obtain

g(λ, µ) =

{
λT1− 1

2‖Zλ‖
2
2 if λT y = 0, λ+ µ = C1,

+∞ otherwise.

We obtain the dual problem

d∗ = max
λ≥0, µ≥0

g(λ, µ) = max
λ

λT1− 1

2
λTZTZλ : 0 ≤ λ ≤ C1, λT y = 0.

Strong duality holds, since the primal problem is a QP.
Note that the result depends only on the so-called kernel matrix K = ZTZ ∈

Sm+ , and the dual problem involves only m variables and m constraints. Hence,
the only dependence on the number of dimensions (features), n, is via the
required computation of the kernel matrix, that is, on scalar products xTi xj ,
1 ≤ i ≤ j ≤ m. Thus, duality allows a great reduction in the computational
effort, compared to solving the original QP in n variables and m constraints.
This is known as the “kernel trick”.

Note also that duality allows to show that the optimal value of the problem
is a convex function of the kernel matrix, which allows to optimize over it. We
will elaborate on this later.

4.4.4 Semidefinite optimization problem

Consider the SDP in standard form:

max
X
〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, λmin(−X) ≤ 0, (4.11)

where we have used the minimum eigenvalue function

λmin(Z) := min
Y
〈Y,Z〉 : Y � 0, TrY = 1 (4.12)
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to represent the positive semi-definiteness condition X � 0 in the SDP1.The
proof of this result can be obtained by first showing that we can without loss of
generality assume that Z is diagonal, and noticing that we can then restrict Y
to be diagonal as well. Note that the above representation proves that λmin is
concave, so problem (4.11) is convex as written.

The Lagrangian for the problem above is

L(X,λ, ν) = 〈C,X〉+

m∑
i=1

νi(bi − 〈Ai, X〉) + λ · λmin(−X).

The dual function for this maximization problem is

g(λ, ν) := max
X
L(X,λ, ν).

Consider the following subproblem, in which R = RT and λ ≥ 0 are given:

G(R, λ) := max
X
〈R,X〉+ λλmin(−X)

= max
X

min
Y�0,TrY=1

〈R− λY,X〉 [eqn. (4.12)]

= max
X

min
Y�0,TrY=λ

〈R− Y,X〉 [replace Y with λY ]

≥ G(R, λ) := min
Y�0,TrY=λ

min
X
〈R− Y,X〉 [weak duality].

The lower bound on G writes

G(R, λ) =

{
0 if TrR = λ ≥ 0, R � 0,
+∞ otherwise.

This shows that G(R, λ) itself is +∞ if (R, λ) is not in the domain of G. Con-
versely, if R � 0, TrR = λ, then the lower bound G(R, λ) = 0 is attained by
choosing X = I, the identity matrix. Thus, G = G.

Coming back to the Lagrangian, we need to apply our result to R = C −∑m
i=1 νiAi. The dual function is

g(λ, ν) =

{
0 if R := C −

∑m
i=1 νiAi � 0, TrR = λ ≥ 0,

+∞ otherwise.

We obtain the dual problem

d∗ = max
λ,ν,R

νT b : R = C −
m∑
i=1

νiAi � 0, TrR = λ ≥ 0,

or, after elimination of λ, and noticing that R � 0 implies TrR ≥ 0:

d∗ = max
ν

νT b : C �
m∑
i=1

νiAi (4.13)

The dual problem is also an SDP, in standard inequality form.

4.5 Minimax equality theorems

4.5.1 Minimax inequality

As seen in lecture 11, weak duality can be obtained as a consequence of the
minimax inequality, valid for any function φ of two vector variables x, y, and

1Recall our definition of the scalar product between two symmetric matricesX,Y : 〈X,Y 〉 =
TrXY .
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any subsets X , Y:

d∗ := max
y∈Y

min
x∈X

φ(x, y) ≤ min
x∈X

max
y∈Y

φ(x, y) := p∗. (4.14)

Minimax equality theorems identify cases for which the equality p∗ = d∗ can be
proven.

4.5.2 Saddle points

A point (x∗, y∗) ∈ X × Y is called a saddle point if

∀ x ∈ X , ∀ y ∈ Y : φ(x∗, y) ≤ φ(x∗, y∗) ≤ φ(x, y∗).

The existence of saddle points is related to the minimax equality, as follows:

Proposition 8 (x∗, y∗) is a saddle point if and only if the minimax equality
holds, and is attained, in the sense that

x∗ ∈ arg min
x∈X

max
y∈Y

φ(x, y), y∗ ∈ arg max
y∈Y

min
x∈X

φ(x, y).

4.5.3 A minimax equality theorem

Theorem 9 (Sion’s minimax theorem) Let X ⊆ Rnbe convex and com-
pact, and let Y ⊆ Rm be convex. Let φ : X × Y → R be a function such
that for every y ∈ Y , φ(·, y) is convex and continuous over X, and for every
x ∈ X, φ(x, ·) is concave and continuous over Y . Then:

sup
y∈Y

min
x∈X

φ(x, y) = min
x∈X

sup
y∈Y

φ(x, y).

4.5.4 Examples

Support vector machine classification. Return to the example seen in
lecture 5, which involved a binary classification problem. Given m data points
xi ∈ Rn, each of which is associated with a label yi ∈ {−1, 1}, the problem is
to find a hyperplane that separates, as much as possible, the two classes. Let
us denote Z = [y1x1, . . . , ymxm] ∈ Rn×m.

We assume that the classes are linearly separable, in the sense that there
exists w ∈ Rn, w 6= 0, and b ∈ R, such that

yi(w
Txi + b) ≥ 0, i = 1, . . . ,m.

We search for a robust hyperplane, in the sense that the above hold for any data
point within a sphere of radius ρ, around the given data points xi. The robust
separability condition reads

yi(w
Txi + b) ≥ ρ‖w‖2, i = 1, . . . ,m.

By homogeneity, we can always assume that (w, b) are chosen so that ρ‖w‖2 = 1.
Thus, the largest radius attainable, called the margin, is ρ∗ = 1/‖w∗‖2, with
w∗ a minimizer for

min
w,b
‖w‖2 : yi(w

Txi + b) ≥ 1, i = 1, . . . ,m,

or, more compactly:
min
w,b
‖w‖2 : ZTw + by ≥ 1.
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The above is a QP (after squaring the objective), so we know that strong duality
holds.

The Lagrange function is

L(w, b, λ) = (1/2)‖w‖22 + λT (1− ZTw − by).

(We squared the objective without harm, for simplicity of the next derivation.)
The dual function can be explicitly computed as follows. Taking the derivative
with respect to w yields w = Zλ, while zeroing out the derivative with respect
to b leads to λT y = 0. Hence:

g(λ) = min
w,b
L(w, b, λ) =

{
λT1− 1

2‖Zλ‖
2
2 if λT y = 0,

+∞ otherwise.

Making the implicit constraints λ ∈ dom g explicit leads to the dual problem

d∗ = max
λ

λT1− 1

2
‖Zλ‖22 : λ ≥ 0, λT y = 0.

This is also a QP, just like the primal problem.
We can interpret the dual geometrically, after massaging it a bit. Scale the

variable as λ = αµ, with α > 0, and µT y = 0, µ ≥ 0, and optimize over α > 0.
The optimization problem over α is:

max
α>0

α(µT1)− α2

2
‖Zµ‖22 =

(1Tµ)2

2‖Zµ‖22
.

Note that the numerator cannot be zero, as long as the data is separable, and
µT y = 0, µ ≥ 0.

This shows that the dual problem can be expressed as

d∗ = max
µ

(1Tµ)2

2‖Zµ‖22
: µ ≥ 0, µT y = 0.

Assume that the first k (k < m) first indices in y are +1, and the rest −1. The
problem reads

d∗ = max
µ

(1Tµ)2

2‖Zµ‖22
: µ ≥ 0,

k∑
i=1

µi =

m∑
i=k+1

µi.

We now use homogeneity of the objective, as follows. Without loss of gen-
erality, we can impose the constraint

∑
i≤k µi =

∑
i>k µi = 1. Then, 1Tµ = 2,

and

d∗ = max
µ

2

‖Zµ‖22
: µ ≥ 0,

k∑
i=1

µi =

m∑
i=k+1

µi.

The margin 1/d∗ = 1/p∗ = ρ∗ is equal to the inverse of the above:

ρ∗ = 1/d∗ = min
µ

(1/2)‖
k∑
i=1

µixi−
m∑

i=k+1

µixi‖2 :

k∑
i=1

µi =

m∑
i=k+1

µi = 1, µ ≥ 0.

The above problem can be interpreted as the minimum Euclidean distance be-
tween the convex hulls of the two classes. The inverse of the dual (or primal)
value is the margin ρ∗, the largest spherical perturbation that the data can tol-
erate before becoming not separable. Strong duality implies that the margin is
half the distance between the two convex hulls.
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4.6 SDP Duality

4.6.1 Primal problem

Consider the SDP in standard form:

p∗ := max
X
〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0, (4.15)

where C,Ai are given symmetric matrices, 〈A,B〉 = TrAB denotes the scalar
product between two symmetric matrices, and b ∈ Rm is given.

4.6.2 Dual problem

At first glance, the problem (4.15) is not amenable to the duality theory devel-
oped so far, since the constraint X � 0 is not a scalar one.

Minimum eigenvalue representation. We develop a dual based on a rep-
resentation of the problem via the minimum eigenvalue, as

p∗ = max
X
〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, λmin(X) ≥ 0, (4.16)

where we have used the minimum eigenvalue function of a symmetric matrix A,
given by

λmin(A) := min
Y
〈Y,A〉 : Y � 0, TrY = 1 (4.17)

to represent the positive semi-definiteness condition X � 0 in the SDP. The
proof of the above representation of the minimum eigenvalue can be obtained
by first showing that we can without loss of generality assume that A is diagonal,
and noticing that we can then restrict Y to be diagonal as well. Note that the
above representation proves that λmin is concave, so problem (4.16) is indeed
convex as written.

Lagrangian and dual function. The Lagrangian for the maximization prob-
lem (4.16) is

L(X,λ, ν) = 〈C,X〉+

m∑
i=1

νi(bi − 〈Ai, X〉) + λ · λmin(X)

= νT b+ 〈C −
m∑
i=1

νiAi, X〉+ λ · λmin(X),

where nu ∈ Rm and λ ≥ 0 are the dual variables. The corresponding dual
function

g(λ, ν) := max
X
L(X,λ, ν).

involves the following subproblem, in which Z = C −
∑m
i=1 νiAi and λ ≥ 0 are

given:

G(λ, Z) := max
X
〈Z,X〉+ λλmin(X). (4.18)

For fixed λ ≥ 0, the function G(·, λ) is the conjugate of the convex function
−λλmin.
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We have

G(λ, Z) = max
X

(
〈Z,X〉+ λ min

Y�0, : TrY=1
〈Y,X〉

)
= max

X
min

Y�0,TrY=1
〈Z + λY,X〉 [eqn. (4.17)]

= max
X

min
Y�0,TrY=λ

〈Z + Y,X〉 [replace Y by λY ]

≤ min
Y�0,TrY=λ

max
X
〈Z + Y,X〉 [minimax inequality]

= min
Y�0,TrY=λ

{
0 if Z + Y = 0
+∞ otherwise

= G(λ, Z),

where

G(λ, Z) :=

{
0 if TrZ = −λ ≤ 0, Z � 0,
+∞ otherwise.

We now show thatG(λ, Z) = G(λ, Z). To prove this, first note thatG(λ, Z) ≥
0 (since X = 0 is feasible). This shows that G(λ, Z) itself is 0 if (λ, Z)
is in the domain of G. Conversely, if TrZ + λ 6= 0, choosing X = εtI
with ε = sign(TrZ + λ) and t → +∞ implies G(λ, Z) = +∞. Likewise, if
TrZ+λ = 0 and λ < 0, we choose X = tI with t→ +∞, with the same result.
Finally, if TrZ = −λ ≤ 0 but λmax(Z) > 0, choose X = tuuT , with u a unit-
norm eigenvector corresponding to the largest eigenvalue of Z, and t → +∞.
Here, we have

〈Z,X〉+ λλmin(X) = t(λmax(Z) + λ)→ +∞,

where we have exploited the fact that λmax(Z) + λ > λ ≥ 0.

Dual problem. Coming back to the Lagrangian, we need to apply our result
to Z = C −

∑m
i=1 νiAi. The dual function is

g(λ, ν) =

{
0 if Z := C −

∑m
i=1 νiAi � 0, TrZ = −λ ≥ 0,

+∞ otherwise.

We obtain the dual problem

d∗ = min
λ,ν,Z

νT b : Z = C −
m∑
i=1

νiAi � 0, TrZ = −λ ≥ 0,

or, after elimination of λ, and noticing that Z � 0 implies TrZ ≤ 0:

d∗ = min
ν

νT b :

m∑
i=1

νiAi � C (4.19)

The dual problem is also an SDP, in standard inequality form.

4.6.3 Conic approach

Conic Lagrangian. The same dual can be obtained with the “conic” La-
grangian

L(X, ν, Y ) := 〈C,X〉+

m∑
i=1

νi(bi − 〈Ai, X〉) + 〈Y,X〉,

where now we associate a matrix dual variable Y to the constraint X � 0.
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Let us check that the Lagrangian above “works”, in the sense that we can
represent the constrained maximization problem (4.15) as an unconstrained,
maximin problem:

p∗ = max
X

min
Y�0

L(X, ν, Y ).

We need to check that, for an arbitrary matrix Z, we have

min
Y�0
〈Y,X〉 =

{
0 if X � 0
−∞ otherwise.

(4.20)

This is an immediate consequence of the following:

min
Y�0
〈Y,X〉 = min

t≥0
min

Y�0,TrY=t
〈Y,X〉 = min

t≥0
tλmin(X),

where we have exploited the representation of the minimum eigenvalue given
in (4.17). The geometric interpretation is that the cone of positive-semidefinite
matrices has a 90o angle at the origin.

Dual problem. The minimax inequality then implies

p∗ ≤ d∗ := min
ν, Y�0

max
X
L(X, ν, Y ).

The corresponding dual function is

g(Y, ν) = max
X
L(X, ν, Y ) =

{
νT b if C −

∑m
i=1 νiAi + Y = 0

−∞ otherwise.

The dual problem then writes

d∗ = min
ν, Y�0

g(Y, ν) = min
ν, Y�0

νT b : C −
m∑
i=1

νiAi = −Y � 0.

After elimination of the variable Y , we find the same problem as before, namely (4.19).

4.6.4 Weak and strong duality

Weak duality. For the maximization problem (4.16), weak duality states that
p∗ ≤ d∗. Note that the fact that weak duality inequality

νT b ≥ 〈C,X〉

holds for any primal-dual feasible pair (X, ν), is a direct consequence of (4.20).

Strong duality. From Slater’s theorem, strong duality will hold if the primal
problem is strictly feasible, that is, if there exist X � 0 such that 〈Ai, X〉 = bi,
i = 1, . . . ,m.

Using the same approach as above, one can show that the dual of prob-
lem (4.19) is precisely the primal problem (4.16). Hence, if the dual problem is
strictly feasible, then strong duality also holds.Recall that we say that a problem
is attained if its optimal set is not empty. It turns out that if both problems are
strictly feasible, then both problems are attained.
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A strong duality theorem. The following theorem summarizes our results.

Theorem 10 (strong duality in SDP) Consider the SDP

p∗ := max
X
〈C,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

and its dual

d∗ = min
ν

νT b :

m∑
i=1

νiAi � C.

The following holds:

• Duality is symmetric, in the sense that the dual of the dual is the primal.

• Weak duality always holds: p∗ ≤ d∗, so that, for any primal-dual feasible
pair (X, ν), we have νT b ≥ 〈C,X〉.

• If the primal (resp. dual) problem is bounded above (resp. below), and
strictly feasible, then p∗ = d∗ and the dual (resp. primal) is attained.

• If both problems are strictly feasible, then p∗ = d∗ and both problems are
attained.

4.6.5 Examples

An SDP where strong duality fails. Contrarily to linear optimization
problems, SDPs can fail to have a zero duality gap, even when they are feasible.
Consider the example:

p∗ = min
x

x2 :

 x2 + 1 0 0
0 x1 x2

0 x2 0

 � 0.

Any primal feasible x satisfies x2 = 0. Indeed, positive-semidefiniteness of the
lower-right 2 × 2 block in the LMI of the above problem writes, using Schur
complements, as x1 ≤ 0, x2

2 ≤ 0. Hence, we have p∗ = 0. The dual is

d∗ = max
Y ∈S3

−Y11 : Y � 0, Y22 = 0, 1− Y11 − 2Y23 = 0.

Any dual feasible Y satisfies Y23 = 0 (since Y22 = 0), thus Y11 = −1 = d∗.

An eigenvalue problem. For a matrix A ∈ Sn+, we consider the SDP

p∗ = max
X
〈A,X〉 : TrX = 1, X � 0. (4.21)

The associated Lagrangian, using the conic approach, is

L(X,Y, ν) = 〈A,X〉+ ν(1−TrX) + 〈Y,X〉,

with the matrix dual variable Y � 0, while ν ∈ R is free.
The dual function is

g(Y, ν) = max
X
L(X,Y, ν) =

{
ν if νI = Y +A
+∞ otherwise.

We obtain the dual problem

p∗ ≤ d∗ = min
ν,Y

ν : Y +A = λI, Y � 0.
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Eliminating Y leads to

d∗ = min
ν
{ν : νI � A} = λmax(A).

Both the primal and dual problems are strictly feasible, so p∗ = d∗, and both
values are attained. This proves the representation (4.21) for the largest eigen-
value of A.

SDP relaxations for a non-convex quadratic problem. Previously, we
have seen two kinds of relaxation for the non-convex problem

p∗ := max
x

xTWx : x2
i ≤ 1, i = 1, . . . , n,

where the symmetric matrix W ∈ Sn is given.
One relaxation is based on a standard relaxation of the constraints, and

leads to

p∗ ≤ dlag := min
D

TrD : D �W, D diagonal. (4.22)

Another relaxation involved expressing the problem as an SDP with rank con-
straints on the a matrix X = xxT :

drank := max
X
〈W,X〉 : X � 0, Xii = 1, i = 1, . . . ,m.

Let us examine the dual of the first relaxation (4.22). We note that the
problem is strictly feasible, so strong duality holds. Using the conic approach,
we have

dlag := min
D

max
Y�0

TrD + 〈Y,W −D〉

= max
Y�0

min
D

TrD + 〈Y,W −D〉

= max
Y
〈Y,W 〉 : � 0, Yii = 1, i = 1, . . . ,m

= drank.

This shows that both Lagrange and rank relaxations give the same value, and
are dual of each other.

In general, for arbitrary non-convex quadratic problems, the rank relaxation
can be shown to be always better than the Lagrange relaxation, as the former
is the (conic) dual to the latter. If either is strictly feasible, then they have the
same optimal value.

4.7 SOCP Duality

Second-order cone optimization is a special case of semi-definite optimization. It
is, however, instructive to develop a more direct approach to duality for SOCPs.

4.7.1 Conic approach

We start from the second-order cone problem in inequality form:

p∗ := min
x

cTx : ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,

where c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, i = 1, . . . ,m.
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Figure 4.2: Geometric interpretation of the property (4.23). The two orthogonal
vectors in black form the maximum angle attainable by vector in the second-
order cone. The vector in red forms a greater angle with the vector on the left,
and the corresponding scalar product is unbounded.

Conic Lagrangian. To build a Lagrangian for this problem, we use the fact
that, for any pair (t, y):

max
(u,λ) : ‖u‖2≤λ

−uT y − tλ = max
λ≥0

λ(‖y‖2 − t) =

{
0 if ‖y‖2 ≤ t
+∞ otherwise.

(4.23)

A geometric interpretation is shown in Fig 4.2. The above means that the
second-order cone has a 90o angle at the origin. To see this, observe that

max
(u,λ) : ‖u‖2≤λ

−uT y − tλ = − min
(u,λ) : ‖u‖2≤λ

(
u
λ

)T (
y
t

)
.

The objective in the right-hand side is proportional to the cosine of the angle
between the vectors involved. The largest angle achievable between any two
vectors in the second-order cone is 90o. If ‖y‖2 > t, then the cosine reaches
negative values, and the maximum scalar product becomes infinite.

Consider the following Lagrangian, with variables x, λ ∈ Rm, ui ∈ Rni ,
i = 1, . . . ,m:

L(x, λ, u1, . . . , um) = cTx−
m∑
i=1

[
uTi (Aix+ bi) + λi(c

T
i x+ di)

]
.

Using the fact above leads to the following minimax representation of the primal
problem:

p∗ = min
x

max
‖ui‖2≤λi, i=1,...,m

L(x, λ, u1, . . . , um).

Conic dual. Weak duality expresses as p∗ ≥ d∗, where

d∗ := max
‖ui‖2≤λi, i=1,...,m

min
x
L(x, λ, u1, . . . , um).

The inner problem, which corresponds to the dual function, is very easy to
solve as the problem is unconstrained and the objective affine (in x). Setting
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the derivative with respect to x leads to the dual constraints

c =

m∑
i=1

[ATi ui + λici].

We obtain

d∗ = max
λ,ui, i=1,...,m

−λT d−
m∑
i=1

uTi bi : c =

m∑
i=1

[ATi ui+λici], ‖ui‖2 ≤ λi, i = 1, . . . ,m.

The above is an SOCP, just like the original one.

Direct approach. As for the SDP case, it turns out that the above ”conic”
approach is the same as if we had used the Lagrangian

Ldirect(x, λ) = cTx+

m∑
i=1

λi
[
‖Aix+ bi‖2 − (cTi x+ di)

]
.

Indeed, we observe that

Ldirect(x, λ) = max
ui, i=1,...,m

L(x, λ, u1, . . . , um) : ‖ui‖2 ≤ λi, i = 1, . . . ,m.

4.7.2 Strong duality

Strong duality results are similar to those for SDP: a sufficient condition for
strong duality to hold is that one of the primal or dual problems is strictly
feasible. If both are, then the optimal value of both problems is attained.

Theorem 11 Consider the SOCP

p∗ := min
x

cTx : ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,

and its dual

d∗ = max
λ,ui, i=1,...,m

−λT d−
m∑
i=1

uTi bi : c =

m∑
i=1

[ATi ui+λici], ‖ui‖2 ≤ λi, i = 1, . . . ,m.

The following holds:

• Duality is symmetric, in the sense that the dual of the dual is the primal.

• Weak duality always holds: p∗ ≥ d∗, so that, for any primal-dual feasible
pair (x, (ui, λi)

m
i=), we have λT d+

∑m
i=1 u

T
i bi ≤ cTx.

• If the primal (resp. dual) problem is bounded above (resp. below), and
strictly feasible, then p∗ = d∗ and the dual (resp. primal) is attained.

• If both problems are strictly feasible, then p∗ = d∗ and both problems are
attained.

4.7.3 KKT conditions for SDP

Consider the SDP

p∗ = min
x

cTx : F (x) := F0 +

m∑
i=1

xiFi � 0,
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with c ∈ Rn, Fi ∈ Sn, i = 0, . . . ,m. The Lagrangian is

L(x, Y ) = cTx−TrF (x)Y,

and the dual problem reads

d∗ = max
Y�0

min
x
L(x, Y ) = max

Y
−TrF0Y : TrFiY = ci, i = 1, . . . , n, ;Y � 0.

The KKT conditions for optimality are as follows:

1. F (x) � 0,

2. Y � 0, Tr(FiY ) = ci, i = 1, . . . , n,

3. Tr(F (x)Y ) = 0.

The last condition can be expressed as F (x)Y = 0, according to the following
result: Let F, Y ∈ Sn. If F � 0 and Y � 0 then Tr(FY ) = 0 is equivalent to
FY = 0.
Proof: Let Y 1/2 be the square root of Y (the unique positive semi-definite
solution to Z2 = Y ). We have TrFY = Tr F̃ = 0, where F̃ := Y 1/2FY 1/2.
Since F � 0, we have F̃ � 0. The trace of F̃ being zero then implies that F̃ = 0.

Using the eigenvalue decomposition, we can reduce the problem to the case
when Y is diagonal. Let us assume that

Y =

(
Λ 0
0 0

)
, F =

(
F11 F12

FT12 F22

)
where Λ � 0 is diagonal, and contains the eigenvalues of Y , and the matrix
F11 is of the same size as Λ (which is equal to the rank of Y ). The condition
F̃ = Y 1/2FY 1/2 = 0 expresses as

0 =

(
Λ1/2 0

0 0

)(
F11 F12

FT12 F22

)(
Λ1/2 0

0 0

)
=

(
Λ1/2F11Λ1/2 0

0 0

)
.

Since Λ � 0, we obtain F11 = 0. But F � 0 then implies F12 = 0 (use Schur
complements), thus

FY =

(
0 0
0 F22

)(
Λ 0
0 0

)
= 0,

as claimed. Thus the last KKT condition can be written as F (x)Y = 0.

Theorem 12 (KKT conditions for SDP) The SDP

p∗ := min
x

cTx : F (x) := F0 +

m∑
i=1

xiFi � 0

admits the dual bound p∗ ≥ d∗, where

d∗ = max
Y
−TrF0Y : TrFiY = ci, i = 1, . . . , n, Y � 0.

If both problems are strictly feasible, then the duality gap is zero: p∗ = d∗, and
both values are attained. Then, a pair (x, Y ) is primal-dual optimal if and only
if the KKT conditions

1. Primal feasibility: F (x) � 0,

2. Dual feasibility: TrFiY = ci, i = 1, . . . , n, Y � 0,
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3. Complementary slackness: F (x)Y = 0,

hold.

Recall LP duality for a problem of the from minx{cTx : Ax ≤ b} with dual
variables y has the KKT conditions were ∀i : yi(b − Ax)i = 0. This can be
compactly written as diag(y) diag(b − Ax) = 0 which is similar to the KKT
conditions for SDP (with Y = diag(y)). This should come as no surprise as
SDP problems include LP problems as a special case.

4.7.4 Examples

4.7.5 Minimum distance to an affine subspace

Return to the problem seen in lecture 11:

p∗ = min ‖x‖2 : Ax = b, (4.24)

where A ∈ Rp×n, b ∈ Rp, with b in the range of A. We have seen how to
develop a dual when the objective is squared. Here we will work directly with
the Euclidean norm.

The above problem is an SOCP. To see this, simply put the problem in
epigraph form. Hence the above theory applies. A more direct (equivalent)
way, which covers cases when norms appear in the objective, is to use the
representation of the objective as a maximum:

p∗ = min
x

max
ν, ‖u‖2≤1

xTu+ νT (b−Ax) ≥ d∗ = max
ν, ‖u‖2≤1

min
x

xTu+ νT (b−Ax).

The dual function is

g(u) = min
x

xTu+ νT (b−Ax) =

{
νT b if AT ν = u,
−∞ otherwise.

We obtain the dual

d∗ = max
ν, u

bT ν : AT ν = u, ‖u‖2 ≤ 1.

Eliminating u:
d∗ = max

ν
bT ν : ‖AT ν‖2 ≤ 1.

4.7.6 Robust least-squares

Consider a least-squares problem

min
x
‖Ax− b‖2,

where A ∈ Rm×n, b ∈ Rm. In practice, A may be noisy. To handle this, we
assume that A is additively perturbed by a matrix bounded in largest singular
value norm (denoted ‖ · ‖ in the sequel) by a given number ρ ≥ 0. The robust
counterpart to the least-squares problem then reads

min
x

max
‖∆‖≤ρ

‖(A+ ∆)x− b‖2.

Using convexity of the norm, we have

∀∆, ‖∆‖ ≤ ρ : ‖(A+ ∆)x− b‖2 ≤ ‖Ax− b‖2 + ‖∆x‖2 ≤ ‖Ax− b‖2 + ρ‖x‖2.
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The upper bound is attained, with the choice2

∆ =
ρ

‖x‖2 · ‖Ax− b‖2
(Ax− b)xT .

Hence, the robust counterpart is equivalent to the SOCP

min
x
‖Ax− b‖2 + ρ‖x‖2.

Again, we can use epigraph representations for each norm in the objective:

min
x,t,τ

t+ ρτ : t ≥ ‖Ax− b‖2, τ ≥ ‖x‖2.

and apply the standard theory for SOCP developed in section 4.7.1. Strong
duality holds, since the problem is strictly feasible.

An equivalent, more direct approach is to represent each norm as a maxi-
mum:

p∗ = min
x

max
‖u‖2≤1, ‖v‖2≤ρ

uT (b−Ax) + vTx.

Exchanging the min and the max leads to the dual

p∗ ≥ d∗ = max
‖u‖2≤1, ‖v‖2≤ρ

min
x

uT (b−Ax) + vTx.

The dual function is

g(u, v) = min
x

vT (b−Ax) + uTx =

{
vT b if AT v + u = 0,
−∞ otherwise.

Eliminating u, we obtain the dual

d∗ = max
u,v

vT b : ‖AT v‖2 ≤ 1, ‖v‖2 ≤ ρ.

As expected, when ρ grows, the dual solution tends to the least-norm solution
to the system Ax = b. It turns out that the above approach leads to a dual that
is equivalent to the SOCP dual, and that strong duality holds.

4.7.7 Probabilistic classification

Consider a binary classification problem, in which the data points for each
class and radom variables x+, x−, each assumed to obey to a given Gaus-
sian distribution N (x̂±,Σ±), where x̂± ∈ Rn, Σ± ∈ Sn++ are the given class-
dependent means and covariance matrices, respectively. We seek an hyperplane
H(w, b) := {x : wTx + b = 0} that probabilistically separates the two classes,
in the sense that

Prob{x+ : (wTx+ + b) ≥ 0} ≥ 1− ε, Prob{x− : (wTx− + b) ≤ 0} ≥ 1− ε,

where ε is a given small number. The interpretation is that we would like
that, with high probability, the samples taken from each distribution fall on the
correct side of the hyperplane. The number ε < 1/2 allows to set the level of
reliability of the classification, with small ε corresponding to a low probability
of mis-classification. We assume that x̂+ 6= x̂−.

When x obeys to a distribution N (x̂,Σ), the random variable wTx+b follows

the distribution N (ξ̂, σ2), with ξ̂ := wT x̂ + b, σ2 = wTΣw. We can write

2We assume that x 6= 0, Ax 6= b. These cases are easily analyzed and do not modify the
result.
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ξ = ξ̂ + σu, with u a normal (zero-mean, unit variance) random variable. We
thus have

Prob{ξ : ξ ≥ 0} = Prob{u : u ≥ −ξ̂/σ} = 1− Φ(−ξ̂/σ),

where Φ is the cumulative density function of the normal distribution, namely
Φ(α) := Prob{u : u ≤ α}. Since Φ is monotone increasing, the condition

Prob{ξ : ξ ≥ 0} ≥ 1 − ε is equivalent to −ξ̂/σ ≤ Φ−1(ε), or ξ̂ ≥ κεσ, where
κε := −Φ−1(ε). Note that κε > 0 whenever 0 ≤ ε < 1/2.

We obtain that the probability constraints above write

wT x̂+ + b ≥ κε
√
wTΣ+w, wT x̂− + b ≤ −κε

√
wTΣ−w.

Note that when Σ± = 0, he above simply requires the correct classification of
the means x̂±. When Σ± grows in size, he conditions become more and more
stringent. We can eliminate b from the constraints above: these constraints hold
for some b if and only if

wT (x̂+ − x̂−) ≥ κε
(√

wTΣ+w +
√
wTΣ−w

)
.

Let us minimize the error probability level ε. Since κε is decreasing in ε,
we would like to maximize κε subject to the constraints above. Exploiting
homogeneity, we can always require wT (x̂+ − x̂−) = 1. We are led to the
problem

p∗ = 1/κ∗ := min
w

√
wTΣ+w +

√
wTΣ−w : wT (x̂+ − x̂−) = 1.

This is an SOCP, which is strictly feasible (in the sense of weak Slater’s condi-
tion), since x̂+ 6= x̂−. Hence strong duality holds.

The dual can be obtained from the minimax expression

p∗ = min
w

max
ν, ‖u±‖2≤1

uT+Σ
1/2
+ w + uT−Σ

1/2
− w + ν(1− wT (x̂+ − x̂−)).

Exchanging the min and max yields

p∗ = d∗ = max
ν, ‖u±‖2≤1

ν : uT+Σ
1/2
+ + uT−Σ

1/2
− = ν(x̂+ − x̂−).

We observe that ν 6= 0 at the optimum, otherwise we would have p∗ = 0,
which is clearly impossible when x̂+ 6= x̂−. We then set κ = 1/ν, scale the
variables u± by r, and change u+ into its opposite. This leads to the dual

κ∗ := min
‖u±‖2≤κ

κ : x̂+ + Σ
1/2
+ u+ = x̂− + Σ

1/2
− u−.

The geometric interpretation is as follows. Consider the ellipsoids E±(κ) :=

{x̂±+Σ
1/2
± u : ‖u‖2 ≤ κ}. The constraints in the dual problem above state that

these two ellipsoids intersect. The dual problem amounts to finding the smallest
r for which the two ellipsoids E±(κ) intersect. The optimal value of κ is then
κ∗, and the corresponding optimal value of the error probability level is ε∗ =
Φ(−κ∗). It can be shown that the optimal separating hyperplane corresponds
to the common tangent at the intersection point.

Largest eigenvalue problem. Let us use the KKT conditions to prove that,
for any given matrix A ∈ Sn:

max
x
{xTAx : xTx = 1} = max

X�0,TrX=1
TrAX = λmax(A),
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where λmax denotes the largest singular value.
Duality theory for SDP immediately tells us that the second equality holds.

Indeed, the SDP

p∗ = max
X

TrAX : X � 0, TrX = 1 (4.25)

admits the following dual:

p∗ ≤ d∗ := min
t

t : tI � A.

Using the eigenvalue decomposition of A, it is easy to show that d∗ = λmax(A).
It remains to prove the first equality. We observe that

max
x
{xTAx : xTx = 1} = max

X
TrAX : X � 0, TrX = 1, rank(X) = 1.

(To see this, set X = xxT .) Thus we need to show that at optimum, the rank
of the primal variable X in (4.32) is one.

The pair of primal and dual problems are both strictly feasible, hence the
KKT condition theorem applies, and both problems are attained by some primal-
dual pair (X, t), which satisfies the KKT conditions. These are X � 0, tI � A,
and (tI − A)X = 0. The last condition proves that any non-zero column x
of X satisfies (tI − A)x = 0 (in other words, x is an eigenvector associated
with the largest eigenvalue). Let us normalize x so that ‖x‖2 = 1, so that
TrxxT = 1. We have (tI − A)xxT = 0, which proves that the feasible primal
variable X∗ = xxT � 0, TrX∗ = 1, is feasible and optimal for the primal
problem (4.32). Since X∗ has rank one, our first equality is proved.

4.8 Optimality Conditions

4.8.1 Complementary slackness

We consider a primal convex optimization problem (without equality constraints
for simplicity):

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, . . . ,m,

and its dual

p∗ ≥ d∗ := max
λ

g(λ),

where g is the dual function

g(λ) := min
x
L(x, λ)

(
:= f0(x) +

m∑
i=1

λifi(x)

)
.

We assume that the duality gap is zero: p∗ = d∗, and that both primal and
dual values are attained, by a primal-dual pair (x∗, λ∗). We have

p∗ = f0(x∗) = d∗ = g(λ∗) = min
x
L(x, λ∗) ≤ L(x∗, λ∗) ≤ f0(x∗) = p∗. (4.26)

Thus, equalities hold in the above.
This implies that x∗ minimizes the function L(·, λ∗):

x∗ ∈ arg min
x
L(x, λ∗).
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If the functions f0, . . . , fm are differentiable, the above implies

∇xL(x, λ∗)|x=x∗ := ∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) = 0.

In addition, the equalities in (4.26) imply

m∑
i=1

λ∗i fi(x
∗) = 0.

Since λ∗ ≥ 0, fi(x
∗) ≤ 0, i = 1, . . . ,m, the above is equivalent to the comple-

mentary slackness condition:

λ∗i fi(x
∗) = 0, i = 1, . . . ,m.

4.8.2 KKT optimality conditions

Assume that the functions f0, . . . , fm are differentiable.
Consider the so-called KKT3 conditions on a primal-dual pair (x∗, λ∗).

fi(x
∗) ≤ 0, i = 1, . . . ,m (primal feasibility),

λ∗ ≥ 0 (dual feasibility),
λ∗i fi(x

∗) = 0, i = 1, . . . ,m (complementary slackness),
∇xL(x, λ∗)|x=x∗ = 0 (Lagrangian stationarity).

(4.27)

The previous development shows that for any problem (convex or not) for
which strong duality holds, and primal and dual values are attained, the KKT
conditions (4.27) are necessary for a primal-dual pair (x∗, λ∗) to be optimal.

If, in addition the problem is convex, then the conditions are also sufficient.
To see this, note that the first two conditions imply that x∗, λ∗ are feasible
for the primal and dual problems, respectively. Since L(·, λ∗) is convex, the
fourth condition (which we called Lagrangian stationarity) states that x∗ is a
minimizer of L(·, λ∗), hence

g(λ∗) = min
x
L(x, λ∗) = L(x∗, λ∗) = f0(x∗),

where we used the third condition (complementary slackness) for the last equal-
ity. The above proves that the primal-dual pair (x∗, λ∗) is optimal, since the
corresponding gap is zero.

4.8.3 Primal solutions from dual variables

Assume that the problem has a zero duality gap, withdual values attained.
Now assume that λ∗ is optimal for the dual problem, and assume that the
minimization problem

min
x
L(x, λ∗).

has a unique solution x(λ∗) that is feasible for the primal problem. Then, x(λ∗)
is optimal. Indeed, the fourth KKT condition (Lagrange stationarity) states
that any optimal primal point minimizes the partial Lagrangian L(·, λ∗), so it
must be equal to the unique minimizer x(λ∗).

This allows to compute the primal solution when a dual solution is known,
by solving the above problem.

3The acronym comes from the names Karush, Kuhn and Tucker, researchers in optimization
around 1940-1960.
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4.9 Conic Duality

4.9.1 Conic problem and its dual

The conic optimization problem in standard equality form is:

p∗ := min
x

cTx : Ax = b, x ∈ K.

where K is a proper cone, for example a direct product of cones that are one of
the three types: positive orthant, second-order cone, or semidefinite cone. Let
K∗ be the cone dual K, which we define as

K∗ := {λ : ∀x ∈ K, λTx ≥ 0}. (4.28)

All cones we mentioned (positive orthant, second-order cone, or semidefinite
cone), are self-dual, in the sense that K∗ = K.

The Lagrangian of the problem is given by

L(x, λ, y) = cTx+ yT (b−Ax)− λTx (4.29)

The last term is added to take account of the constraint x ∈ K. From the very
definition of the dual cone:

max
λ∈K∗

−λTx =

{
0 if x ∈ K,
+∞ otherwise.

Thus, we have

p∗ = min
x

max
y,λ∈K∗

L(x, λ, y)

= min
x

max
y,λ∈K∗

cTx+ yT (b−Ax)− λTx

≥ d∗ := max
y,λ∈K∗

g(λ, y)

(4.30)

where

g(λ, y) = min
x

cTx+ yT (b−Ax)− λTx =

{
yT b if c−AT y − λ = 0,
−∞ otherwise

The dual for the problem is:

d∗ = max yT b : c−AT y − λ = 0, λ ∈ K∗.

Eliminating λ, we can simplify the dual as:

d∗ = max yT b : c−AT y ∈ K∗.

4.9.2 Conditions for strong duality

We now summarize the results stated in past lectures. Strong duality hold when
either:

• The primal is strictly feasible, i.e. ∃x : Ax = b, x ∈ int(K). This also
implies that the dual problem is attained.

• The dual is strictly feasible, i.e. ∃y : c−AT y ∈ int(K∗). This also implies
that the primal problem is attained.

• If both the primal and dual are strictly feasible then both are attained
(and p∗ = d∗).
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4.9.3 KKT conditions for conic problems

Assume p∗ = d∗ and both the primal and dual are attained by some primal-dual
triplet (x∗, λ∗, y∗). Then,

p∗ = cTx∗ = d∗ = g(λ∗, y∗)

= min
x
L(x, λ∗, y∗)

≤ L(x∗, λ∗, y∗)

= cTx∗ − λ∗Tx∗ + y∗T (b−Ax∗)
≤ cTx∗ = p∗.

(4.31)

The last term in the fourth line is equal to zero which implies λ∗Tx∗ = 0.
Thus the KKT conditions are:

• x ∈ K, Ax = b,

• λ ∈ K∗,

• λTx = 0,

• c−AT y − λ = 0, that is, ∇xL(x, λ, y) = 0.

Eliminating λ from the above allows us to get rid of the Lagrangian station-
arity condition, and gives us the following theorem.

Theorem 13 (KKT conditions for conic problems) The conic problem

p∗ := min
x

cTx : Ax = b, x ∈ K.

admits the dual bound p∗ ≥ d∗, where

d∗ = max yT b : c−AT y ∈ K∗.

If both problems are strictly feasible, then the duality gap is zero: p∗ = d∗, and
both values are attained. Then, a pair (x, y) is primal-dual optimal if and only
if the KKT conditions

1. Primal feasibility: x ∈ K, Ax = b,

2. Dual feasibility: c−AT y ∈ K∗,

3. Complementary slackness: (c−AT y)Tx = 0,

hold.

4.9.4 KKT conditions for SDP

Consider the SDP

p∗ = min
x

cTx : F (x) := F0 +

m∑
i=1

xiFi � 0,

with c ∈ Rn, Fi ∈ Sn, i = 0, . . . ,m. The Lagrangian is

L(x, Y ) = cTx−TrF (x)Y,

and the dual problem reads

d∗ = max
Y�0

min
x
L(x, Y ) = max

Y
−TrF0Y : TrFiY = ci, i = 1, . . . , n, ;Y � 0.

The KKT conditions for optimality are as follows:
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1. F (x) � 0,

2. Y � 0, Tr(FiY ) = ci, i = 1, . . . , n,

3. Tr(F (x)Y ) = 0.

The last condition can be expressed as F (x)Y = 0, according to the following
result: Let F, Y ∈ Sn. If F � 0 and Y � 0 then Tr(FY ) = 0 is equivalent to
FY = 0.
Proof: Let Y 1/2 be the square root of Y (the unique positive semi-definite
solution to Z2 = Y ). We have TrFY = Tr F̃ = 0, where F̃ := Y 1/2FY 1/2.
Since F � 0, we have F̃ � 0. The trace of F̃ being zero then implies that F̃ = 0.

Using the eigenvalue decomposition, we can reduce the problem to the case
when Y is diagonal. Let us assume that

Y =

(
Λ 0
0 0

)
, F =

(
F11 F12

FT12 F22

)
where Λ � 0 is diagonal, and contains the eigenvalues of Y , and the matrix
F11 is of the same size as Λ (which is equal to the rank of Y ). The condition
F̃ = Y 1/2FY 1/2 = 0 expresses as

0 =

(
Λ1/2 0

0 0

)(
F11 F12

FT12 F22

)(
Λ1/2 0

0 0

)
=

(
Λ1/2F11Λ1/2 0

0 0

)
.

Since Λ � 0, we obtain F11 = 0. But F � 0 then implies F12 = 0 (use Schur
complements), thus

FY =

(
0 0
0 F22

)(
Λ 0
0 0

)
= 0,

as claimed. Thus the last KKT condition can be written as F (x)Y = 0.

Theorem 14 (KKT conditions for SDP) The SDP

p∗ := min
x

cTx : F (x) := F0 +

m∑
i=1

xiFi � 0

admits the dual bound p∗ ≥ d∗, where

d∗ = max
Y
−TrF0Y : TrFiY = ci, i = 1, . . . , n, Y � 0.

If both problems are strictly feasible, then the duality gap is zero: p∗ = d∗, and
both values are attained. Then, a pair (x, Y ) is primal-dual optimal if and only
if the KKT conditions

1. Primal feasibility: F (x) � 0,

2. Dual feasibility: TrFiY = ci, i = 1, . . . , n, Y � 0,

3. Complementary slackness: F (x)Y = 0,

hold.

Recall LP duality for a problem of the from minx{cTx : Ax ≤ b} with dual
variables y has the KKT conditions were ∀i : yi(b − Ax)i = 0. This can be
compactly written as diag(y) diag(b − Ax) = 0 which is similar to the KKT
conditions for SDP (with Y = diag(y)). This should come as no surprise as
SDP problems include LP problems as a special case.
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4.9.5 Examples

Largest eigenvalue problem. Let us use the KKT conditions to prove that,
for any given matrix A ∈ Sn:

max
x
{xTAx : xTx = 1} = max

X�0,TrX=1
TrAX = λmax(A),

where λmax denotes the largest singular value.
Duality theory for SDP immediately tells us that the second equality holds.

Indeed, the SDP

p∗ = max
X

TrAX : X � 0, TrX = 1 (4.32)

admits the following dual:

p∗ ≤ d∗ := min
t

t : tI � A.

Using the eigenvalue decomposition of A, it is easy to show that d∗ = λmax(A).
It remains to prove the first equality. We observe that

max
x
{xTAx : xTx = 1} = max

X
TrAX : X � 0, TrX = 1, rank(X) = 1.

(To see this, set X = xxT .) Thus we need to show that at optimum, the rank
of the primal variable X in (4.32) is one.

The pair of primal and dual problems are both strictly feasible, hence the
KKT condition theorem applies, and both problems are attained by some primal-
dual pair (X, t), which satisfies the KKT conditions. These are X � 0, tI � A,
and (tI − A)X = 0. The last condition proves that any non-zero column x
of X satisfies (tI − A)x = 0 (in other words, x is an eigenvector associated
with the largest eigenvalue). Let us normalize x so that ‖x‖2 = 1, so that
TrxxT = 1. We have (tI − A)xxT = 0, which proves that the feasible primal
variable X∗ = xxT � 0, TrX∗ = 1, is feasible and optimal for the primal
problem (4.32). Since X∗ has rank one, our first equality is proved.

4.10 Sensitivity Analysis

The material of this section is entirely contained in section §5.6 of BV.
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Chapter 5

Algorithms

5.1 Interior-Point Methods

The material of this lecture is entirely contained in section §5.6 of BV.

5.2 First-Order Methods (I)

5.2.1 Motivation

Interior point methods have complexity of C ·O(log( 1
ε )), where C is dependent

on problem size. These methods are second-order methods, as they require
the Hessian to be evaluated, and the corresponding KKT system of the form
Hx = g needs to be solved at each Newton step. Thus, C can be quite high for
large-scale problems. On the other hand, the dependence on the accuracy ε is
very good.

The motivation for first-order methods is:

• a much better complexity per iteration;

• at the price of a worse dependence on the precision ε, anywhere from
log(1/ε) to 1/ε2.

Many of these methods hinge on the notion of subgradient, which generalizes
to arbitrary convex functions the notion of gradient for differentiable functions.

5.2.2 Subgradients

5.2.3 Definition

Let f : Rn → R be a convex function. The vector g ∈ Rn is a subgradient of f
at x if

∀ y : f(y) ≥ f(x) + gT (y − x).

The subdifferential of f at x, denoted ∂f(x), is the set of such subgradients at
x.

• ∂f(x) is convex, closed, never empty on the relative interior1 of its domain.

1The relative interior of a set is the interior of the set, relative to the smallest affine subspace
that contains it.

83
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• if f is differentiable at x, then the subdifferential is a singleton: ∂f(x) =
{∇f(x)}.

For example, consider f(x) = |x| for x ∈ R. We have

∂f(x) =

 {−1} if x < 0,
[−1, 1] if x = 0,
{+1} if x > 0.

5.2.4 Constructing subgradients

Weak rule for point-wise supremum: if fα are differentiable and convex
functions that depend on a parameter α ∈ A, with A an arbitrary set, then

f(x) = sup
α∈A

fα(x)

is possibly non-differentiable but convex. If β is such that f(x) = fβ(x), then a
subgradient of f at x is simply any element in ∂fβ(x).

Example: maximum eigenvalue. For X = XT ∈ Rn×n, define f(X) =
λmax(X) to be the largest eigenvalue ofX (f is real valued sinceX is symmetric).
A subgradient of f at X can be found using the following variational (that is,
optimization-based) representation of f(X):

f(X) = max
y : ‖y‖2=1

yTXy.

Any unit-norm eigenvector ymax of X corresponding to the largest eigenvalue
achieves the maximum in the above. Hence, by the weak rule above, a subgra-
dient of f at X is given by a gradient of the function X → yTmaxXymax, which
is ymaxy

T
max.

Strong rule for pointwise maximum. If a function is defined as the point-
wise maximum of convex functions, we can compute the whole sub-differential
(and not just one subgradient via the weak rule). The strong rule is: if f =
maxi fi, then

∂f(x) = Co
⋃
i

{∂fi(x) : fi(x) = f(x)} .

That is, the subdifferential is the convex hull of union of subdifferentials of
active functions at x.

Minimization rule. Assume that the function f is given as the result of an
optimization problem:

f(y) = min
x

f0(x) : fi(x) ≤ yi, i = 1, . . . ,m.

The problem has a Lagrangian of the form

L(x, λ) = f0(x) +

m∑
i=1

λi(fi(x)− yi),

with the dual variable λi ≥ 0, i = 1, . . . ,m. Assume that the primal problem is
strictly feasible. Then, an optimal dual variable λ∗ exists, and we have

h(y) = min
x

f0(x) +

m∑
i=1

λ∗i (fi(x)− yi). (5.1)



5.2. FIRST-ORDER METHODS (I) 85

We have

h(z) = min
x

max
λ≥0

f0(x) +

m∑
i=1

λi(fi(x)− zi) [unconstrained representation]

≥ max
λ≥0

min
x

f0(x) +

m∑
i=1

λi(fi(x)− zi) [weak duality for h(z)]

≥ min
x

f0(x) +

m∑
i=1

λ∗i (fi(x)− zi) [choose λ = λ∗ in the above]

= min
x

f0(x) +

m∑
i=1

λ∗i (fi(x)− yi) + (y − z)Tλ∗

= h(y) + gT (z − y), [eqn. (5.1)]

where g = −λ∗. Hence −λ∗ is a subgradient of h at y.

5.2.5 Optimality

We consider the unconstrained minimization problem

min
x

f(x),

where f is convex.

Differentiable case. If f is differentiable, then the condition for optimality
is just ∇f(x) = 0.

Non-differentiable case. If f is not differentiable, but convex, then the con-
dition for x to be optimal is

∀ y : f(y) ≥ f(x).

This can be written equivalently as 0 ∈ ∂f(x), since by the strong rule given
before:

0 ∈ ∂f(x)⇔ ∃ x : ∀ y, f(y) ≥ f(x) + 0T (y − x) = f(x). (5.2)

Example: piece-wise linear minimization

We show in this example how the classical LP duality and this new condition
for optimality are the same.

Let

f(x) = max
i

(aTi x+ bi)

then

min f(x) = min t : t ≥ aTi x+ bi, i = 1, . . . ,m.

We get the dual to be:

max
λ

bTλ : : λ ≥ 0, ATλ = 0, 1Tλ = 1.

The corresponding KKT conditions are

t ≥ aTi x+ bi, λ ≥ 0, ;λi = 0 if t > aTi x+ bi, 0 =
∑

λiai,
∑

λi = 1.
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The above can be written equivalently as 0 ∈ ∂f(x), since

∂f(x) = Conv{ai : f(x) = aTi x+ bi} =

 ∑
i∈I(x)

λiai :
∑
i∈I(x)

λi = 1

 ,

where I(x) is the set of indices i that achieve the maximum in maxi(a
T
i x+ bi).

5.2.6 Subgradient Methods

The subgradient method is a simple algorithm for minimizing a non-differentiable
convex function. The subgradient method uses step lengths that are fixed ahead
of time, instead of an exact or approximate line search as in the gradient method.
Unlike the ordinary gradient method, the subgradient method is not a descent
method; the function value can (and often does) increase. The subgradient
method is far slower than Newton’s method, but is much simpler and can be
applied to a far wider variety of problems.

5.2.7 Unconstrained case

Suppose f : R→ Rn is convex, and we seek to solve the problem

p∗ = min
x

f(x).

To minimize f , the subgradient method uses only subgradient information at
every step.

Algorithm:

x(k+1) = x(k) − αkg(k), g(k) ∈ ∂f(x(k)).

Here, x(k) is the k-th iterate, g(k) is any subgradient of f at x(k), and αk > 0 is
the k-th step size. Thus, at each iteration of the subgradient method, we take
a step in the direction of a negative subgradient. Since this is not a descent
method so we must keep track of the best solution seen so far, via the values

p
(k)
best = min

0≤i≤k
f(x(k)).

We will also denote p = limk→∞ p
(k)
best.

Assumptions: The assumptions for subgradient methods are as follows:

• p∗ is finite and attained

• There is a constant G such that, for every x, and every g ∈ ∂f(x), we
have ‖g‖2 ≤ G.

• There is a large enough constant R such that R ≥ ||x(1) − x∗||2.

Step-size rules: Several different step size rules can be used.

• Constant step size: αk = α ∀k

• Constant step length: αk = γ/‖g(k)‖2. This implies that ‖x(k+1) − xk‖2 ≤ γ
for every k.
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Convergence analysis. Let x? be any minimizer of f . We have

‖x(k+1) − x?‖22 = ‖x(k) − αkg(k) − x?‖22
= ‖x)k) − x?‖22 − 2αkg

(k)T (x(k) − x?) + α2
k‖g(k)‖22

≤ ‖x(k) − x?‖22 − 2αk(f(x(k) − p?) + α2
k‖g(k)‖22,

where we have used

p? = f(x?) ≥ f(x(k)) + g(k)T (x? − x(k)).

Applying this recursively, we get

‖x(k+1) − x?‖2 ≤ ‖x(1) − x?‖22 − 2

k∑
i=1

(f(x(i) − p?) +

k∑
i=1

α2
i ‖g(i)‖22

≤ R2 − 2

k∑
i=1

(f(x(i) − p?) +G2
k∑
i=1

α2
i .

By definition of p
(k)
best, we have

k∑
i=1

(f(x(i) − p?) ≥ (p
(k)
best − p

?)

(
k∑
i=1

αi

)
,

which yields

p
(k)
best − p

? ≤
R2 +G2

∑k
i=1 α

2
i

2
∑k
i=1 αi

. (5.3)

This shows that

• For constant step sizes, the condition G2α/2 ≤ ε guarantees that p−p? ≤
G2α/2 ≤ ε.

• For constant step length, the condition Gγ/2 ≤ ε guarantees that p−p? ≤
G2α/2 ≤ ε.

Complexity. The convergence analysis result (5.3) depends on the choice of
the step size rule. Which rule is optimal for this bound? The problem of
minimizing the upper bound in (5.3) is convex and symmetric (the function does
not change when we exchange variables). Hence, the optimal αi’s are all equal
at optimum, to a number α = (R/G)k−1/2. With this choice of step length rule,
the number of iterations needed to achieve ε-sub-optimality, as predicted by the
analysis, is (RG)/ε2. The dependence on ε is now O(1/ε2), which is much worse
than that delivered by interior-point methods (which have O(log(1/ε))). This
is not surprising: sub-gradient methods apply to any convex problem (provided
we are able to compute a sub-gradient), whereas IPMs only apply to specific
convex problems.

Example. We seek to find a point in a given intersection of closed convex
sets,

C = C1 ∩ · · · ∩ Cm ⊆ Rn.

We formulate this problem as minimizing f , where

f(x) = max(dist(x,C1) · · ·dist(x,Cm)).
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Let Pj the projection operator on Cj , and let

fj(x) = dist(x,Cj)

be the corresponding distance function. Thus, Pj(x) achieves the minimum
value of fj . Then, a subgradient of fj at x is

gj(x) =
x− Pj(x)

‖x− Pj(x)‖2
.

5.3 First-Order Methods (II)

Reading assignment: Notes on decomposition methods by Stephen Boyd, Lin
Xiao, Almir Mutapcic and Jacob Mattingley posted on bspace.

5.3.1 Constrained Case

We now consider the convex, inequality constrained problem:

min f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

It is sometimes useful to consider the problem in abstract form:

min
x

f(x) : x ∈ C,

where C is a convex set.

5.3.2 Projected Gradient Method

Algorithm. The projected subgradient method uses the iteration

x(k+1) = PC(x(k) − α(k)g(k))

where PC is projection on C:

PC(x) = arg min
z∈C

‖x− z‖2,

and g(k) is any subgradient of f at x(k).

Analysis. The convergence analysis is the same as the ordinary subgradient
method for unconstrained problems. The reason for this is that projection does
not increase Euclidean length.

Examples.

• Equality-constrained problems. Let A ∈ Rm×n, b ∈ Rm, with m ≤ n, A
full rank (hence, AAT � 0). We consider the problem

min
x

f(x) : Ax = b,

where A ∈ Rm×n, with m ≤ n, and A full (row) rank (that is, AAT � 0).

The projection on the affine space {x : Ax = b} is

P := I −AT (AAT )−1A.
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Indeed, the problem

min
z
‖z − x‖2 : Ax = b

admits the unique solution z = Px (check this!).

The subgradient iterations are thus given by:

x(k+1) = x(k) − α(k)P (g(k)).

• l1-norm minimization. For the problem

min
x
‖x‖1 : Ax = b.

Let us derive a subgradient for the function x→ ‖x‖1. We have

‖x‖1 = max
u : ‖u‖∞≤1

uTx,

hence, by the maximum rule for subgradients, we obtain that a subgradient
for the l1-norm function at x is u∗(x), where u∗(x) is any maximizer for
the problem above. In particular, the choice u∗(x) = sign(x) works.

Thus, a subgradient of the objective is g = sign(x), so the projected
subgradient update is

x(k+1) = x(k) − α(k)P (sign(x(k))).

5.3.3 Projected Subgradient for the Dual

The projected subgradient method may also be applied to the dual problem
when

• Primal iterates are not feasible but become so as k →∞.

• Strong duality holds, and the dual function values converge to p∗.

We consider the problem

min
x

f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

The dual problem is :

max
λ≥0

g(λ),

where

g(λ) = min
x

f0(x) +

m∑
i=1

λifi(x).

The dual variable can be iterated as

λ(k+1) = max(λ(k) − α(k)h(k), 0), h(k) ∈ ∂(−g(λ(k))).

Note that, according to the subgradient construction rules,

hi = −fi(x∗(λ)), i = 1, . . . ,m,

where x∗(λ) ∈ argmin [f0(x) +
∑
λifi(x)].
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Example. Let P � 0. Consider the problem

min
x

1

2
xTPx+ qTx, : x2

i ≤ 1, i = 1, . . . ,m.

The Lagrangian is, with Dλ := diag(λ) � 0:

L(x, λ) =
1

2
xT (P + 2Dλ)x− qTx− 1Tλ.

A minimizer for the dual function is unique, and given by:

x∗(λ) := (P + 2Dλ)−1q.

The iterates are of the form

λ(k+1) = max(λ(k) − α(k)h(k), 0), h(k) = 1− (x(k))2, x(k) = (P + 2Dλ(k))−1q.

5.3.4 Decomposition Methods

Decomposition methods are useful when attempting to solve large-scale (convex)
optimization problems with a few coupling constraints or variables.

To illustrate some of the ideas, consider a problem of the form

p∗ := min
x1,x2,y

f1(x1, y) + f2(x2, y),

where fi’s are both jointly convex. (Hence, the problem is convex.)

5.3.5 Primal decomposition

You can think of y as a coupling variable, which couples the behavior of the
two terms. Primal decomposition is based on the observation that for fixed
y, the problem decomposes as two problems involving independent variables.
Precisely,

p∗ = min
y

φ1(y) + φ2(y), (5.4)

where φi’s are defined as

φi(y) = min
x

fi(x, y), i = 1, 2.

Note that computing φi, i = 1, 2 amounts to solve two separate convex sub-
problems (which can be processed on two separate computers). Note also that
the function φi, i = 1, 2 are both convex, because of the joint convexity of the
fi’s.

The “master” problem (5.4) can be solved by a sub-gradient method. All it
requires is forming a subgradient of the objective function, which is of the form
g1 + g2, where gi is a subgradient of φi at y.

Consider the problem of finding a subgradient for the function

φ(y) := min
x

f(x, y),

where f is a convex function of the variable (x, y). To do this, we assume that
for every y, the solution to the above problem is attained by some optimal point
x∗(y). Since x∗(y) is optimal, a subgradient of f at the point z := (x∗(y), y)
is of the form (0, g(y)). (For example, if f differentiable, the above means that
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the partial derivative of f with respect to the first variable is zero at z.) Now,
for every (x′, y′), we have the subgradient inequality

f(x′, y′) ≥ f(x∗(y), y) +

(
0

g(y)

)T (
x′ − x∗(y)
y′ − y

)
= φ(y) + g(y)T (y′ − y).

Since the left-hand side is independent of x′, and the above is valid for every x′,
we can take the minimum of the right-hand side over x′, and obtain

φ(y′) = min
x′

f(x′, y′) ≥ φ(y) + g(y)T (y′ − y),

which proves that g(y) is a subgradient of φ at y.

5.3.6 Dual decomposition

In dual decomposition, we write the original problem as

p∗ = min
x1,x2,y1,y2

f1(x1, y1) + f2(x2, y2) : y1 = y2.

Assuming strong duality, we can express the problem as

p∗ = max
ν

min
x1,x2,y1,y2

f1(x1, y1) + f2(x2, y2) + νT (y1 − y2) = max
ν

g1(ν) + g2(ν),

where

g1(ν) := min
x,y

f1(x, y) + νT y, g2(ν) := min
x,y

f2(x, y)− νT y. (5.5)

We can solve the above “master” problem using a subgradient method. To
do this, we need to find the subgradients of the convex functions −gi at a given
point ν. For a fixed ν, the problem of computing g1, g2 (and subgradients) can
be solved separately.

After a change of sign, the problem boils down to the following: given a
convex function of the form

h(ν) = max
y

νT y − f(x, y),

with f convex, find a subgradient of h at ν. We can apply the maximum rule
for subgradients. Assuming that the above problem is attained at some variable
y∗(ν), we obtain that y∗(ν) is a subgradient of h at ν.

The subgradient update will have the form

νk+1 = νk − αk(y∗2(νk)− y∗1(νk)),

where y∗i (ν) (i = 1, 2) is any minimizer corresponding to the two separate prob-
lems (5.5). The above can be interpreted as a simple linear feedback rule, where
the penalty parameters (νk) are updated according to how big the violation of
the equality constraint y1 = y2 is.
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Chapter 6

Applications

6.1 Moment Inequalities

Reading assignment: Section §7.4 of BV, and the Chapter 3 of the book on
Robust Optimization1

6.1.1 Chance Linear Programming

See the Chapter mentioned above.

6.1.2 Bounds on Probabilities

Problem statement. We consider a random variable x with distribution π,
which is only known to belong to a class of distributions Π, and seek a bound
on the probability of a given set C, that is, a lower bound on

inf
π∈Π

Prob C. (6.1)

Alternatively, we may seek an upper bound on the quantity obtained by replac-
ing “inf” with “sup” in the above. Both problem are equivalent, in the sense
that replacing C by its complement in one problem leads to the other.

We assume that Π is a class of distributions with given mean and covariance
matrix:

Π =
{
π ∈ Π0 : Eπx = x̂, Eπ(x− x̂)(x− x̂)T = Σ

}
,

where Π0 is the set distributions on Rn, x̂ ∈ Rn, Σ ∈ Sn++ are given, and Eπ

denotes the expectation operator with respect to the distribution π.
Problems involving bounds on probabilities arise in many situations. For

example, we may interested in yield maximization, which involves the function
Y (y) := Prob(y+x ∈ S), where y is a vector of design parameters, x represents
additive implementation noise, and S is a a subset of allowable designs.

Dual problem. We can formulate problem (6.1) as an infinite dimensional
linear programming problem:

p∗ := inf
π(·)≥0

∫
1C(x)π(x)dx :

∫ (
x
1

)(
x
1

)T
π(x)dx = Γ, (6.2)

1A. Ben Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, 2009.
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where 1C is the location function of C (with value 1 on C, and 0 elsewhere), and

Γ =

(
Σ + xxT x
xT 1

)
� 0.

The problem is linear in the sense that it involves an objective that is linear (in
the variable π), affine equality constraints, and sign constraints. Of course, this
is not an LP in the classical sense, as the variable is infinite-dimensional.

Using duality, we can transform the problem into one with infinitely many
constraints, and finitely many variables. To do this, we first obtain a weak
duality result, using the Lagrange functional2

L(π,M) = inf
π(·)≥0

∫
1C(x)π(x)dx+ 〈M,Γ−

∫ (
x
1

)(
x
1

)T
π(x)dx〉.

We check that this Lagrangian “works”, that is, we have the minimax represen-
tation

p∗ := min
π(·)≥0

max
M∈Sn

L(π,M).

By weak duality, we have d∗ ≤ p∗, with

d∗ := max
M∈Sn

min
π(·)≥0

L(π,M).

The dual function is

g(M) := min
π(·)≥0

L(π,M) = 〈M,Γ〉+ min
π(·)≥0

〈π,1C − qM 〉,

where qM is the quadratic function with values

qM (x) := 〈M,

(
x
1

)(
x
1

)T
〉 =

(
x
1

)T
M

(
x
1

)
,

and we define the scalar product between two measures π, h as

〈π, h〉 :=

∫
π(x)h(x)dx.

It is easy to show that, for any function h:

min
π(·)≥0

〈π, h〉 =

{
0 if h(x) ≥ 0 for every x ∈ Rn,
−∞ otherwise.

We obtain

g(M) =

{
〈M,Γ〉 if 1C(x) ≥ qM (x) for every x ∈ Rn,
−∞ otherwise.

The dual problem reads

sup
M=MT

g(M) = sup
M=MT

〈M,Γ〉 :
∀x ∈ Rn, qM (x) ≤ 1,
∀ x 6∈ C, qM (x) ≤ 0.

The first constraint is equivalent to the semidefinite constraint M � J , where
J is a matrix with all zeros, except a 1 in the lower-right element.

2We say “functional” as the Lagrangian’s input variables includes π, which is a function,
more precisely a measure.
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Further reductions. In some cases, the dual problem can be expressed ex-
actly as a semidefinite program. Consider the case when C is defined by a single
(possibly non-convex) quadratic inequality:

C =

{
x : q(x) :=

(
x
1

)T
Q

(
x
1

)
> 0

}
,

with Q = QT given.
Then, using the S-lemma (see BV, §B.2) the condition

∀ x, q(x) ≤ 0, qM (x) ≤ 0

is equivalent to the existence of τ ≥ 0 such that M � τQ.
The dual problem now reads

d∗ = sup
M=MT , τ≥0

〈M,Γ〉 : J �M, M � τQ,

which is an SDP. It turns out that it can be further simplified greatly, to a
single-variable convex problem. Precisely, we have

1− d∗ = min
τ≥0

λmax[(J − τQ)+],

where X+ is the matrix obtained from the symmetric matrix X by replacing
the negative eigenvalues by 0.

Strong duality. It can be shown that if Γ � 0, then strong duality holds.

Chebyschev and Markov inequalities. Chebyschev and Markov inequali-
ties can be derived from the above, as special cases.


