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Introduction to Classes of System Responses First Order Systems Second Order Systems Time Specs of Systems

Module 5 Outline

1 General linear systems analysis
2 Responses to different test signals
3 First order systems & properties
4 Second order systems & properties
5 Reading sections: 5.1–5.5 Ogata, 5.1–5.4 Dorf and Bishop
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What have we done so far?

Well...So far, we know how to model a dynamical system

+ Reduce blocks to a single transfer function

Module’s goal: analyze + characterize input-output behavior

Simple idea: want to know how your system is performing?

Yes! Well, excite it with different test inputs ⇒ study the response
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Test Inputs
1 Impulse input: u(t) = δ(t), Output: impulse-response,

yi (t) = L−1[H(s)] = h(t)
2 Step input: u(t) = 1+(t), Output: step-response, ys(t) =?

– Step input characterizes system’s ability to track sudden input
changes

3 Ramp input: u(t) = t, Output: ramp-response, yr (t) =?

– Ramp input characterizes system’s ability to track varying input

– Why are these important? How is this useful? Relationship between
them:
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Example

First, we find the overall transfer function, H(s)

Solution:
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Transient Vs. Steady State Responses
Any output for linear system is decomposed
of: y(t) = yss(t) + ytr (t)

yss(t): stead-state response — signifies the system’s ability to
eventually track input signals after few seconds

ytr (t): transient response — path the output took to reach SS

– Overly oscillatory ytr (t) is usually bad for systems. Why?

– Slow transient response is typically undesirable. Why?

Example:

©Ahmad F. Taha Module 05 — System Analysis & First and Second Order Dynamical Systems 6 / 36



Introduction to Classes of System Responses First Order Systems Second Order Systems Time Specs of Systems

Stable Vs. Unstable Systems? How to Characeterize?

Stable system: step response converges to a finite value OR

Impulse response converges to...?

Unstable system: step response output doesn’t converge

Example:
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First Order Systems

What’s the meaning of first order systems?

They’re characterized by this TF:

H(s) = Y (s)
U(s) = 1

Ts + 1 , T = time constant

Can we derive the ODE related to the input and output?

What happens if T < 0? T > 0?

What happens when T varies? For T > 0:

– Larger T ⇒ slower decay (larger time-constant)

– Smaller T ⇒ faster decay (smaller time-constant)
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First Order System: Stability Analysis & Impulse Response
For smaller T , system will go to zero faster

Plots show the impulse response, h(t)
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Step Response

What is the step response of the FOS?

Ystep(s) = H(s)U(s) = 1
Ts + 1

1
s = 1

s −
1

s + 1
T

⇒ ystep(t) = 1−e
−t
T

Similar to impulse response, smaller T ⇒ faster response

Example:
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Time Constant and Step Response

What happens if t = T , i.e., t = 1 time constant?

Answer: ystep(t = T ) = 1− e −T
T = 1− e−1 = 0.632

How many time constants do we need to reach steady-state (SS)?

Solution: after t ≥ 5T , we reach 99.3% of SS
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Effect of Poles on Step Response
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Ramp Response of FOSs
So far, we’ve done impulse and step responses of FOSs

Now: ramp response. Again, why are we doing this?

What is the impulse response of the FOS?

Yramp(s) = H(s)U(s) = 1
Ts + 1

1
s2 = 1

s2−
T
s −

T 2

Ts + 1 ⇒ yramp(t) = t−T +Te
−t
T
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Important Remarks on FOSs

Location of the pole (i.e., p = −1/T ) determines the response of
FOSs

Transient will settle down (i.e., stable) if p is in the LHP

If the pole is further on the LHP, transients will settle down faster

Why are there no oscillations for step response of FOSs?

I’ll give you brownie points if you guess :)
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SOSs: Introduction and Definition

Generic TF of SOSs:

H(s) = b0s2 + b1s + b2
a0s2 + a1s + a2

Most important thing for SOSs: the location of the poles of H(s)

SOS is called stable if all poles are in the LHP
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Step Response of Stable SOS

Example: H(s) = 2s + 1
s2 + 3s + 2 — poles: p1 = −2, p2 = −1

What’s ystep(t)? We should know how to obtain that by now
ystep(t) = e−t − 1.5e−2t + 0.5
Poles p1 and p2 contribute to a term in ystep(t)
However, since both poles are stable, step response converges to a
SS value = 0.5 — notice the so-called overshoot
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What happens if the poles are stable, but complex?

Another motivating example: H(s) = 1
s2 + 2s + 5

Poles: p1,2 = −1± 2i — stable poles (LHP), complex conjugates

Step response: ystep(t) = 0.2− 0.2e−t cos(2t) + 0.1e−t sin(2t)

Sines and cosines ⇒ oscillations, right? What’s the SS value?

Step response:
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More Common Standard Form of SOSs

The most common standard form of SOSs:

H(s) = ω2

s2 + 2ζωns + ω2
n

This form: (a) represents only one family of SOSs, (b) denominator
polynomial has +ve coefficients, (c) H(0) = 1

Definitions: (a) ωn ≡ undamped natural frequency, (b) ζ ≡
damping ratio

ωn > 0 , ζ > 0
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SOS Example: finding ωn and ζ

Recall this circuit example from Module 3

What was the TF? H(s) = 1
LCs2 + RCs + 1

This is not in the standard form (previous slide)

In standard form: H(s) = 1/LC
s2 + R/L︸︷︷︸

=2ζωn

·s + 1/LC︸ ︷︷ ︸
=ω2

n

Hence: ωn =
√

1/LC , ζ = R

2
√

L
C
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Poles of SOSs

H(s) = ω2
n

s2 + 2ζωns + ω2
n

Poles:

p1,2 =
−2ζωn ±

√
4ω2

n(ζ2 − 1)
2

SOS has two poles — how many cases to consider? Three cases:

– Underdamped case: Two complex conjugate poles ⇒ 0 < ζ < 1

– Critically damped case: Two identical real poles ⇒ ζ = 1

– Overdamped case: Two distinct real poles ⇒ ζ > 1
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Case 1 — Underdampled System, 0 < ζ < 1
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Case 1 — Underdampled System, Examples
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Case 1 — Underdampled System, Step Response
We can easily obtain the step response given Case 1 (0 < ζ < 1)

Since we have complex poles, p = −σ + jωd , taking the inverse
Laplace transform for 1/(s + p) would yield exponentially decaying
sines and cosines:

ept = e(−σ+ωd )t = e−σt (cos(ωd t) + j sin(ωd t))
What are the transients and SS components?
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Case 1 — Underdampled System Step Response
Here, we change ζ, while ωn is constant for an underdamped system

Remember that

s(t) = ystep(t) = 1− e−ζωnt cos(ωd t)− ζ√
1− ζ2

e−ζωnt sin(ωd t)

©Ahmad F. Taha Module 05 — System Analysis & First and Second Order Dynamical Systems 24 / 36



Introduction to Classes of System Responses First Order Systems Second Order Systems Time Specs of Systems

Case 1 — Underdampled System, Important Remarks

As we saw in the previous plot for different ζ for underdamped case,
we have overshoot and oscillation

Real part of the poles (σ = ζωn) determines transient amplitude
decaying rate

Imaginary part of the poles (ωd ) determines transient oscillation
frequency

For a given undamped system, as ζ ↗:

– Angle θ ↗, poles shift more to the left, ωd ↘

– Overshoot ↘

What happens if we ↗ ωn and fix ζ?

©Ahmad F. Taha Module 05 — System Analysis & First and Second Order Dynamical Systems 25 / 36



Introduction to Classes of System Responses First Order Systems Second Order Systems Time Specs of Systems

Fixing ζ and Increasing ωn
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Case 2 — Critically Damped System, ζ = 1
This case is not that interesting — not as much as Case 1
Why? Cz we have 2 identical real poles at the same location (LHP):

H(s) = ω2
n

s2 + 2ζωns + ω2
n

= ω2
n

(s + ωn)2

Poles: p1,2 = −ωn

Step response? ystep(t) = L−1[ 1
s ·

ω2
n

(s + ωn)2 ] = 1− e−ωnt (1 + ωnt)

How did we get this from the step response of underdamped case?

yunder
step (t) = 1− e−ζωnt cos(ωd t)− ζ√

1− ζ2
e−ζωnt sin(ωd t)

Well, this can be obtained by letting ζ approach 1 and use the limit
of sin(αx)/x = α as x → 0:

lim
ζ→1

sin(ωd t)√
1− ζ2

= lim
ζ→1

sin(ωn
√

1− ζ2t)√
1− ζ2

= ωnt
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Case 3 — Overdamped System, ζ > 1

H(s) = ω2
n

s2 + 2ζωns + ω2
n

Also, not a very interesting case...Actually, a very boring one

Poles: distinct real poles, p1,2 = −(ζ ±
√
ζ2 − 1)ωn

Step response:

yover
step (t) = 1− ωn

2
√
ζ2 − 1

(
ep1t

p1
− ep2t

p2

)
Can approximate overdamped second order systems as first order
systems?

Yes. How? Dominant poles...
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Step Response for Different ζ

For ζ ≥ 1, system response mimics what?
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VERY Important Remarks on SOSs

Overdamped system is slow in responding to inputs — takes time to
reach SS

That depends on how far the poles are in the LHP

For systems without oscillations, which one responds faster to
inputs? In other words, which one reaches SS faster?

– Answer: critically damped system, ζ = 1 — see previous plot

Underdamped systems with 0.5 ≤ ζ ≤ 0.8 get close to the final
value more rapidly than critically dampled or overdampled system,
without incurring too large overshoot

How can we obtain impulse or ramp response of second order
systems?

– Answer: by differentiation and integration, respectively.
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Time Specs of Systems
1 td : delay time — time for ystep(t) to reach half of ystep(∞)
2 tr : rise time — time for ystep(t) to reach first ystep(∞)
3 tp: peak time — time for ystep(t) to reach first peak
4 Mp: maximum overshoot — Mp = ystep(tp)− ystep(∞)

ystep(∞)
5 ts : settling time — time for ystep(t) to settle within a range of 2%

5% of ystep(∞)
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Time Specs of Systems — 2

H(s) = ω2
n

s2 + 2ζωns + ω2
n

Given ζ and ωn, can we determine the time-specs in terms of them?

I mean can we have an equations that relate the two?

We can, yes...We’ll focus on the underdamped case as three
time-specs aren’t defined for critically and overdamped systems

Step response, revisited:

s(t) = ystep(t) = 1− e−ζωnt cos(ωd t)− ζ√
1− ζ2

e−ζωnt sin(ωd t)

= 1− 1√
1− ζ2

e−ζωnt sin(ωd t + β)

β = tan−1
√

1− ζ2

ζ
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Closed form Solution of Time Specs
Delay time: find the smallest positive solution to ystep(td ) = 0.5
Rise time: smallest positive solution of ystep(tr ) = 1⇒

tr = π − β
ωd

=
π − tan−1

√
1− ζ2

ζ√
1− ζ2ωn

Peak time: smallest positive solution to y ′step(tp) = 0: tp = π

ωd

Maximum overshoot:

Mp = ystep(tp)− ystep(∞)
ystep(∞) = ystep(tp)− 1⇒ Mp = e

−
ζ√

1− ζ2
π

Settling time: ts ≈
4
ζωn

(2% criteria), ts ≈
3
ζωn

(5% criteria),

tp ↘ with ωn; the smaller the ζ, the larger the Mp
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Effect of Pole Locations on Responses of SOSs

©Ahmad F. Taha Module 05 — System Analysis & First and Second Order Dynamical Systems 34 / 36



Introduction to Classes of System Responses First Order Systems Second Order Systems Time Specs of Systems

Where Are We Now?
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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