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Module 6 Outline

@ From FOSs & SOSs to higher-order systems

@ Stability of linear systems

© Routh-Hurwitz stability criterion

©Q System types & steady-state tracking errors

@ Reading sections: 5.4, 5.6, 5.8 Ogata, 5.6, 6.1, 6.2 Dorf and Bishop
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Nonstandard SOSs

w;

H(s) = —F77—
() s2 + 2Cwps + w?

@ So far, we analyzed the above TFs for SOSs
e What if we have a non-unit DC gain?
Kw?

H(s) = — *%n
(s) 52 + 2Cwps + w?

What's ystep(00)? Behavior won't change as much

@ What if we have a zero:

H(s) =

@ Given an extra zero, we obtain:
_ ws n as
$2 +2Cwps + w2 52+ 2(wps + w?

2
aswy,

§2 + 2Cwps + w?

H(s)

= Hy(s)+Ha(s) = H1(5)+%5H1(s)
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Adding an Extra Zero

H@:m@+%@:m@+%W$)

n
@ Therefore, under any input (step, impulse, ramp), the response will

be:
e
y(8) = yi(t) + y2(t) = () + —xi(2)
n
@ y1(t): unit-step response of standard SOS; Step response example

@ Zero affects overshoot in the step response

Step Response
— s+1 e
H() = 230851 .
s(t) —1
3 0.8 \
EL 06 sl(t)
o s2(t)
02
B \/
0 5 0

Time (sec)
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How can we analyze systems with more zeros, more poles?

First, write the TF in this standard form:

_ s a)ls—z) (s~ zn)
H(s)—K(s_pl)(s_p2)...(5—p,,)

Location of poles determines almost everything
How many cases do we have?

For distinct real poles:

(%) O p
AT

H(s) =
() S—Pp1 S— Pn

Unit step and impulse responses? Easy to derive
_yimp(t) — Oqeplt 4+ 4 Oz,,ep"t 7y$tep(t) — BO + 6lep1t + .- _|_/8nepnt

Transients will vanish iff p;,..., p, are negative
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Mean, Complex Poles

2) For distinct real and complex poles:
plex p
q r
Qj Brs + vk
H(s) = J
() jzzls—pj +§s2+20k5+wf

You'll have to show me your PFR superpowers to obtain
o, B, Yis Ok, Wi Y, k

Unit-impulse response:
q r
Yimp(t) = Z a;ePit + Z cre <t sin(wit 4 0y)
j=1 k=1
— Unit-step response:

q r
ystep(t) = Z djepjt + Z fke_akt sin(wkt + ¢k)
j=1 k=1

Similar to the previous case, transients will vanish if all poles are in
the LHP
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Summary & Important Remarks

@ Each real pole p contributes to an exponential term in any response
@ Each complex pair of poles contributes a modulated oscillation

— The decay of these oscillations depend on whether the real-part of
the pole is negative or positive

— The magnitude of oscillations, contributions depends on residues,
hence on zeros

@ Dominant poles: poles that dominate any kind of output response

— Dominant poles can be real (be real ok?) or complex
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Dominant Poles — Example

_ 1
H1(8) = ogaag2) (<2 F8s425) Hy(s) = 322
pio=-1+j p3a=-4+33 pPr2=—-1%j
Step Respons
0.025 T T T T
X
0.02 -~ = e
X
so(t)
0.015 + —
X £
< 0.01 \ —
X s1(t)
0.005 + .
0 1 2 3 4 5 6
Time (=c)
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Who Likes Stability? Who Likes Instability?

Stability: one of the most important problems in control

e System is stable if, under bounded input, its output will converge to
a finite value, i.e., transient terms will eventually vanish. Otherwise,
it is unstable

@ Above definition is a tricky one—we need a quantitative one

@ From now on, this system is stable iff all p's have strictly negative
real parts

(s—z)(s—2z) - (s—zm)

(s—p1)(s—p2) (s —pn)

If p; =0, would the system be stable? NO, NO.

H(s)=K
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Design Problems Related to Stability
controller plant
U
© C(s) G(s) QNN
o Stability Criterion: for a given system (i.e., given C(s), G(s)),

determine if it is stable

e Stabilization: for a given system that is unstable (i.e., poles of G(s)

Y(s)

U(s)

@ Most engineering design applications for control systems evolve
around this simple, yet occasionally challenging idea

are unstable), design C(s) such as is stable

@ Some systems cannot be stabilized
@ For more complex G(s), design of C(s) is likely to be more complex

@ However, this IS NOT A RULE
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How to Infer Stability? Two Methods

bos™ + bys™ 1 4 - + by
H(S): aps" n—1
0S" + ais +---+a,

@ System, denoted by the above TF H(s) is stable iff:
roots(aps” + a;s" 1 +---+a, =0) € LHP
@ How can we determine that? Two methods:
(1) Direct factorization, Matlab, algebra:
as"+as" + - +a=K(s—pi)(s—p2)--(s—pa) =0
— That cannot be done on hands (often), need a computer
(2) Routh's Stability Criterion:

— for any polynomial of any degree, determine # of roots in the LHP,
RHP, or jw axis without having to solve the polynomial

— Advantages: Less computations + gives discrete answers
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Routh-Hurwitz Stability Criterion (RHSC)

@ So, the RHSC only tells me whether a polynomial (denominator of a
TF) has roots in LHP, RHP, or jw axis, not the exact locations,
which answers stability question of control systems

@ The opposite is not always true!
@ How does this work:

— First, if aps” + a1s" 1 4 - - + a, is stable, then ag, a1, - , a, have
the same sign and are nonzero

— Examples: (s? — s+ 1) is not stable, s* + s* + 52 + 1 is not stable

- s* + s34+ 52+ s+ 1 is undetermined
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How to Apply the RHSC?

e Objective: given ags” + a;s" ' + - + a, = determine if
polynomial is stable

(Step 1) Determine if all coefficients of ags” + a1s" 14 ... 4+ a, have the
same sign & nonzero

(Step 2) If the answer to Step 1 is NO, then system is unstable

(Step 3) Arrange all the coefficients in this Routh-Array format:

ap a» a4 ag ...
M v
n—1 al/ag/ag/a—{/..

S
— a1ap—agag — aia4—agas
s"=2 by by bz by by = ay b2 ai
— biaz—a1bp — bias—aib3
sn=3 1 cy C3 Cq c1 = b1 cy = R v

§2 ep e
st f1

sO g1
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RHSC Algorithm — 2

s" ap |az2 a4 ag
s""1] a1 |az a5 a7
=2 | by by b3 by
n—3 | C1 co C3 c4

Higher Order Systems

g2 er | e2
st

30 g1

(Step 4) # RHP roots = # of sign changes in the first column

(Step 5) Stability determination: ags” + a;s"~! + - - + a, is stable if the first
column has no sign change
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RHSC Example — 1

@ Determine the stability of:
s* +25° 4352 +4s+5=0

@ Apply the RHSC:

s 1 3 5
s3 2 4 0
2l amoy ase s
st 1425 — 6

0 =?

(S. 4-5) # RHP roots = # of sign changes = 2 = two RHP roots =
unstable polynomial
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RHSC Example — 2

o What is a condition on ag, aj, a2, a3 such that the polynomial is
stable (all are +ve)?

a0s®+ a;s? +as+a3 =0

@ Apply the RHSC:

s3 ag a
52 di as
1 dy - dp — dg - as
s 274043
ai
s° as
(S. 4-5) Need no sign change in the first column = need | a;a, > apas |, since

a; > ovi
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RHSC Example — 2
U(s) E(s) Y (s)

@ Given the above unity-feedback system, and
K
G(s) = (7 7 105 1 20)’ find range of K s.t. the CLTF is stable
K
s34+ 10s%2 +20s + K

— Apply the RHSC: Steps 1 and 2; K > 0 and:

@ Solution: first, find CLTF; H(s) =

s3 1 20
s2 10 K
st —i(K —200)

10
s0 K

(S. 4-5) Need no sign change in the first column = need K < 200 and

K>0=[0<200< K
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Special Case 1

Sign of 07 What if 1 of the entries in the first column is 07

Solution: replace 0 with ¢, where ¢ is a small +ve number

o Case 1: if the sign of the coefficient above the zero (¢) is the same
as the sign under € = there are pair of complex roots

— Example: s3 +2s2+5+2=0

s® 1 1
s? 2
st O=e€

s°

@ Case 2: if the sign of the coefficients above and below € change =
there is a sign change = apply Step 5
— Example: s* —3s+2=(s—1)*(s+2)=0

3 -3

s
s? O~ e 2
2
st -3 - -
€
s° 2
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Special Case 2 + Example

e What if an entire row is zero? Then we have:

— (a) two real roots with equal magnitudes and opposite signs and/or
(b) two complex conjugate roots

@ Solution illustrated with this example:

— Example: p(s) = s® + 5s* + 115> +23s2 + 285+ 12 =0

N W s G

lnlnlf(nlnln(n
(ST [

1 11 28

5 23 12

6.4 25.6

3 12

e e old row, define aux. polynomial : P(s) = 3s% 4 12
6 0 new row, define aux. polynomial : P'(s) = 6s+ 0
12

(Step 4) Find roots of auxiliary polynomial: 3s® + 12 =0 = p;» = +2
(Step 5) p1,2 are both roots for the original polynomial
(Step 6) Count sign changes: none, hence no additional RHP roots
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Another Example

o Example: p(s) = s® + 2s* + 2453 4 48s% — 255 — 50 = 0

s 1 24 25

st 2 48 —50

53 e e old row, define aux. polynomial : P(s) = 2s* 4 48s°> — 50
s® 8 96 new row, define aux. polynomial : P'(s) = 8s> + 96

s° 24 50

st 1127 0

s° —50

(Step 4) Find roots of auxiliary polynomial:
2s* + 485> =50 =0 = pyp34 = £j5, £1

(Step 5) ps in RHP, then at least one RHP pole
(Step 6) Count sign changes: once, hence one more additional RHP root

@ Conclusion: one RHP pole — verification:
p(s)=(s+1)(s—1)(s+,5)(s—j5)(s+2)=0
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What is tracking? Why is tracking important?

Tracking is an important task in control systems

Objective: track a certain reference signal (reference(t) or u(t))
Often, ref.(t) is a step function or piecewise constant signals
Tracking is typically achieved via unity-feedback control systems
Definition 1: tracking error = e(t) = u(t) — y(t)

Definition 2: stead-state error (SSE) = e, = e(0)

Wait, we can apply FVT here = | g5 = Iin}) sE(s)
S—>

Important point: SSE only defined if system is stable
Target: study SSE for a unity-feedback system

U(s E(s Y (s
) toe (s) G(s) (s)
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What Inputs Can We Consider?

Unit step input: u(t) =1, t>0 = U(s) = %
Unit ramp input: u(t)y=t, t>0 =U(s) =23

Unit acceleration input:  (t) = 2, t>0 =U@B)=3%

. _tk _ 1
In general: u(t) =14, t>20 =U(s) = T

@ Many system inputs can be approximated with scaled polynomials

@ How can we do that? polyfit on MATLAB:
http://www.mathworks.com/help/matlab/ref/polyfit.html

o If your system can track high order inputs (e.g.,
u(t) = t10 4 5¢* — 7), then your system has an excellent ability in
tracking arbitrary inputs
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System Type (More Definitions)

U(s s s
(s) ++E() G(s) Y(s)

o A unity-feedback system with an OLTF

 K(Tas+1)---(Tps +1)
) = W Tos +1) .- (Tos + 1)

is called type N where N is the # of poles of G(s) at s =0
@ Examples

@ Goal: find SSE for different system types & test inputs (unit step,
impulse, ramp)
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SSE for a Unit-Step Input

ess = lim sE(s), if system is stable
s—0

e We now want to find es for any given G(s)
E(s) 1
U(s) 1+G(s)

@ Recall (from Module 04 and Exam |) that
@ Then, what's e;s = e(00) if u(t) =17

o Answer: e, = Ky, = lims_0 G(5)

e
@ K, is called the static position error constant

@ What would e for Type 0 systems? Type 17

e Answer: Type 0, it's constant (above), Types 1 and above, it's 0
@ Conclusion 1: Type 0 systems track unit step with finite SSE

@ Conclusion 2: Type 1 or higher systems track unit step with 0 SSE
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SSE for a Unit-Step Input

€ss = Sll_% sE(s)

@ Then, what's e;s = e(00) if u(t) = t?

1
@ Answer: e, = a K, = lims_,0 sG(s)

@ K, is called the static velocity error constant

@ What would e, for Type 0 systems? Type 17

e Answer: Type 0, it's infinity! Why?

@ Conclusion 1: Type 0 systems cannot track unit ramp input

@ Conclusion 2: Type 1 systems track unit ramp step with finite SSE

@ Conclusion 3: Type 2 or higher systems track unit ramp unit step
with 0 SSE
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Summary of the Results

Unit step input | Unit ramp input Acceleration
u(t)=1 u(t)=t input
u(t)=t2/2

1

Type 0 systems K,
o 0.]
Kp = G(0)

Type 1 systems 1

0 Ko 00

Ky = limg_qsG(s)

Type 2 systems 1

0 0 K,

K, = limy_gs2G(s)

@ You should not memorize any of these results — you should be able
to derive all of these 9 results

@ Before you compute anything, verify that the system is stable
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Design Example 1

U(s) + Y (s)

_ _ 1
G($) = 2t D 42)

o For the above given system, and assuming that u(t) = 1, find K
such that the SSE is as small as possible

o Answer:
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Design Example 2

R(s) " )
| 1+ ks = @' S + 200y

@ Assume that u(t) = t, find K such that the SSE is zero

@ Answer: First, find the overall transfer function:

_ Cls) _ w;
H(s) = R(s) (14 ks)

52 + 2Cwps + w?
e Now, find E(s) then es via FVT

52 + 2(wps — w2ks s2 + 2Cwps — w2ks\ 1
E - R *C = n R — n -
(s) (s)=C(s) ( 52 + 2Cwps + w? > () < 52 4+ 2Cwps + w? > 52

s2+2Cw,,sw,2,ks> 1 20w, — w3k

= ey = e(c0) = lim sE(s) = lim s <

s—0 s—0 s2+ 2wps +w? ) 2 w2
2¢ .
We want ess = 0 = set k = — to achieve that
Wn
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Design Example 3

U(s) 4 Y(s)

@ For the above given system, and assuming that

K
G = —_—
() 3 +52425 -4’

obtain the SSE for unit step input when K = 1,5, or 10.

G(s)

(1) First, we have to find the range for K s.t. system (CLTF) is stable
(2) Routh-Array for s3 + 52 +2s+ K — 4 = 0:
3 1 2

S
2 —
zl 6—1K =t s system is stable if
s° K_4
(3) .. for K =1,10, SSE doesn't exist. System is Type 0 = for K =5,
1

SSE is: - -

* =TT 6(0)
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Design Example 4

U(s) + A c(s) G(s) Y(s)
@ For the above given system, assume that
1 K
G(s) = C(s)=1+—.
(s) s34+524+25—-05’ (s) + s

For K > 0, obtain the range of K such that the CLTF is stable
@ Do this problem at home

@ Solution: 0 < K < 0.75
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Course Progress

Modeling Analysis Design
(5-6 Weeks) (7-8 Weeks) (5-6 Weeks)
- Laplace Transforms  ~15.8&27¢ Order * Root-Locus
= Transfer Functions Systems + Modern Control
= Solutionof ODEs ~TFime Response + State-Space
~Medeling-of ~Transient& + MIMO System
Systems Steady State Properties
= Block Diagrams * Frequency Response
» Linearization » Bode Plots
+ RH Criterion
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ©
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