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Higher Order Systems Stability Analysis Steady-State Errors

Module 6 Outline

1 From FOSs & SOSs to higher-order systems
2 Stability of linear systems
3 Routh-Hurwitz stability criterion
4 System types & steady-state tracking errors
5 Reading sections: 5.4, 5.6, 5.8 Ogata, 5.6, 6.1, 6.2 Dorf and Bishop
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Nonstandard SOSs

H(s) = ω2
n

s2 + 2ζωns + ω2
n

So far, we analyzed the above TFs for SOSs

What if we have a non-unit DC gain?

H(s) = Kω2
n

s2 + 2ζωns + ω2
n

– What’s ystep(∞)? Behavior won’t change as much

What if we have a zero:

H(s) = αsω2
n

s2 + 2ζωns + ω2
n

Given an extra zero, we obtain:

H(s) = ω2
n

s2 + 2ζωns + ω2
n

+ αs
s2 + 2ζωns + ω2

n
= H1(s)+H2(s) = H1(s)+ α

ω2
n

sH1(s)
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Adding an Extra Zero
H(s) = H1(s) + H2(s) = H1(s) + α

ω2
n

sH1(s)

Therefore, under any input (step, impulse, ramp), the response will
be:

y(t) = y1(t) + y2(t) = y1(t) + α

ω2
n

y ′1(t)

y1(t): unit-step response of standard SOS; Step response example
Zero affects overshoot in the step response
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Higher Order Systems

How can we analyze systems with more zeros, more poles?

First, write the TF in this standard form:

H(s) = K (s − z1)(s − z2) · · · (s − zm)
(s − p1)(s − p2) · · · (s − pn)

Location of poles determines almost everything

How many cases do we have?

(1) For distinct real poles:

H(s) = α1
s − p1

+ · · ·+ αn
s − pn

– Unit step and impulse responses? Easy to derive

yimp(t) = α1ep1t + · · ·+αnepnt , ystep(t) = β0 + β1ep1t + · · ·+ βnepnt

– Transients will vanish iff p1, . . . , pn are negative
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Mean, Complex Poles
(2) For distinct real and complex poles:

H(s) =
q∑

j=1

αj
s − pj

+
r∑

k=1

βks + γk

s2 + 2σks + ω2
k

– You’ll have to show me your PFR superpowers to obtain
αj , βk , γk , σk , ωk ∀j , k

– Unit-impulse response:

yimp(t) =
q∑

j=1
αjepj t +

r∑
k=1

cke−σk t sin(ωkt + θk)

– Unit-step response:

ystep(t) =
q∑

j=1
djepj t +

r∑
k=1

fke−σk t sin(ωkt + φk)

– Similar to the previous case, transients will vanish if all poles are in
the LHP
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Summary & Important Remarks

Each real pole p contributes to an exponential term in any response

Each complex pair of poles contributes a modulated oscillation

– The decay of these oscillations depend on whether the real-part of
the pole is negative or positive

– The magnitude of oscillations, contributions depends on residues,
hence on zeros

Dominant poles: poles that dominate any kind of output response

– Dominant poles can be real (be real ok?) or complex
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Dominant Poles — Example
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Who Likes Stability? Who Likes Instability?

Stability: one of the most important problems in control

System is stable if, under bounded input, its output will converge to
a finite value, i.e., transient terms will eventually vanish. Otherwise,
it is unstable

Above definition is a tricky one—we need a quantitative one

From now on, this system is stable iff all p’s have strictly negative
real parts

H(s) = K (s − z1)(s − z2) · · · (s − zm)
(s − p1)(s − p2) · · · (s − pn)

If pi = 0, would the system be stable? NO, NO.
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Design Problems Related to Stability

Stability Criterion: for a given system (i.e., given C(s),G(s)),
determine if it is stable

Stabilization: for a given system that is unstable (i.e., poles of G(s)

are unstable), design C(s) such as Y (s)
U(s) is stable

Most engineering design applications for control systems evolve
around this simple, yet occasionally challenging idea

Some systems cannot be stabilized

For more complex G(s), design of C(s) is likely to be more complex

However, this IS NOT A RULE
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How to Infer Stability? Two Methods

H(s) = b0sm + b1sm−1 + · · ·+ bm
a0sn + a1sn−1 + · · ·+ an

System, denoted by the above TF H(s) is stable iff:

roots(a0sn + a1sn−1 + · · ·+ an = 0) ∈ LHP

How can we determine that? Two methods:

(1) Direct factorization, Matlab, algebra:

a0sn + a1sn−1 + · · ·+ an = K (s − p1)(s − p2) · · · (s − pn) = 0

– That cannot be done on hands (often), need a computer

(2) Routh’s Stability Criterion:

– for any polynomial of any degree, determine # of roots in the LHP,
RHP, or jω axis without having to solve the polynomial

– Advantages: Less computations + gives discrete answers
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Routh-Hurwitz Stability Criterion (RHSC)

So, the RHSC only tells me whether a polynomial (denominator of a
TF) has roots in LHP, RHP, or jω axis, not the exact locations,
which answers stability question of control systems

The opposite is not always true!

How does this work:

– First, if a0sn + a1sn−1 + · · ·+ an is stable, then a0, a1, · · · , an have
the same sign and are nonzero

– Examples: (s2 − s + 1) is not stable, s4 + s3 + s2 + 1 is not stable

– s4 + s3 + s2 + s + 1 is undetermined
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How to Apply the RHSC?

Objective: given a0sn + a1sn−1 + · · ·+ an ⇒ determine if
polynomial is stable

(Step 1) Determine if all coefficients of a0sn + a1sn−1 + · · ·+ an have the
same sign & nonzero

(Step 2) If the answer to Step 1 is NO, then system is unstable

(Step 3) Arrange all the coefficients in this Routh-Array format:

©Ahmad F. Taha Module 06 — Higher Order Systems, Stability Analysis, & Steady-State Errors 13 / 32



Higher Order Systems Stability Analysis Steady-State Errors

RHSC Algorithm — 2

(Step 4) # RHP roots = # of sign changes in the first column

(Step 5) Stability determination: a0sn + a1sn−1 + · · ·+ an is stable if the first
column has no sign change
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RHSC Example — 1

Determine the stability of:

s4 + 2s3 + 3s2 + 4s + 5 = 0

Apply the RHSC:

s4 1 3 5

s3 2 4 0

s2 2·3−4·1
2 = 1 2·5−1·0

2 = 5

s1 1·4−2·5
1 = −6

s0 =?

(S. 4–5) # RHP roots = # of sign changes = 2 ⇒ two RHP roots ⇒
unstable polynomial
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RHSC Example — 2

What is a condition on a0, a1, a2, a3 such that the polynomial is
stable (all are +ve)?

a0s3 + a1s2 + a2s + a3 = 0

Apply the RHSC:

s3 a0 a2

s2 a1 a3

s1 a1 · a2 − a0 · a3
a1

s0 a3

(S. 4–5) Need no sign change in the first column ⇒ need a1a2 > a0a3 , since
ai > 0 ∀i
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RHSC Example — 2

Given the above unity-feedback system, and
G(s) = K

s(s2 + 10s + 20) , find range of K s.t. the CLTF is stable

Solution: first, find CLTF; H(s) = K
s3 + 10s2 + 20s + K

– Apply the RHSC: Steps 1 and 2; K > 0 and:
s3 1 20
s2 10 K
s1 − 1

10 (K − 200)
s0 K

(S. 4–5) Need no sign change in the first column ⇒ need K < 200 and
K > 0, ⇒ 0 < 200 < K
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Special Case 1
Sign of 0? What if 1 of the entries in the first column is 0?
Solution: replace 0 with ε, where ε is a small +ve number
Case 1: if the sign of the coefficient above the zero (ε) is the same
as the sign under ε ⇒ there are pair of complex roots

– Example: s3 + 2s2 + s + 2 = 0
s3 1 1
s2 2 2
s1 0 ≈ ε

s0 2

Case 2: if the sign of the coefficients above and below ε change ⇒
there is a sign change ⇒ apply Step 5

– Example: s3 − 3s + 2 = (s − 1)2(s + 2) = 0
s3 1 −3
s2 0 ≈ ε 2

s1 −3 − 2
ε

s0 2
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Special Case 2 + Example

What if an entire row is zero? Then we have:
– (a) two real roots with equal magnitudes and opposite signs and/or

(b) two complex conjugate roots
Solution illustrated with this example:

– Example: p(s) = s5 + 5s4 + 11s3 + 23s2 + 28s + 12 = 0

s5 1 11 28
s4 5 23 12
s3 6.4 25.6
s2 3 12
s1 0 0 old row, define aux. polynomial : P(s) = 3s2 + 12
s1 6 0 new row, define aux. polynomial : P ′(s) = 6s + 0
s0 12

(Step 4) Find roots of auxiliary polynomial: 3s2 + 12 = 0⇒ p1,2 = ±j2
(Step 5) p1,2 are both roots for the original polynomial
(Step 6) Count sign changes: none, hence no additional RHP roots
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Another Example

Example: p(s) = s5 + 2s4 + 24s3 + 48s2 − 25s − 50 = 0

s5 1 24 −25
s4 2 48 −50
s3 0 0 old row, define aux. polynomial : P(s) = 2s4 + 48s2 − 50
s3 8 96 new row, define aux. polynomial : P ′(s) = 8s3 + 96
s2 24 −50
s1 112.7 0
s0 −50

(Step 4) Find roots of auxiliary polynomial:
2s4 + 48s2 − 50 = 0⇒ p1,2,3,4 = ±j5,±1

(Step 5) p3 in RHP, then at least one RHP pole

(Step 6) Count sign changes: once, hence one more additional RHP root

Conclusion: one RHP pole — verification:
p(s) = (s + 1)(s − 1)(s + j5)(s − j5)(s + 2) = 0
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Tracking Error
What is tracking? Why is tracking important?

– Tracking is an important task in control systems
* Objective: track a certain reference signal (reference(t) or u(t))

Often, ref .(t) is a step function or piecewise constant signals
Tracking is typically achieved via unity-feedback control systems

– Definition 1: tracking error = e(t) = u(t)− y(t)
– Definition 2: stead-state error (SSE) = ess = e(∞)

Wait, we can apply FVT here ⇒ ess = lim
s→0

sE (s)

Important point: SSE only defined if system is stable
Target: study SSE for a unity-feedback system
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What Inputs Can We Consider?

Many system inputs can be approximated with scaled polynomials

How can we do that? polyfit on MATLAB:
http://www.mathworks.com/help/matlab/ref/polyfit.html

If your system can track high order inputs (e.g.,
u(t) = t10 + 5t4 − 7), then your system has an excellent ability in
tracking arbitrary inputs
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System Type (More Definitions)

A unity-feedback system with an OLTF

G(s) = K (Tas + 1) · · · (Tms + 1)
sN(Tbs + 1) . . . (Tns + 1)

is called type N where N is the # of poles of G(s) at s = 0

Examples

Goal: find SSE for different system types & test inputs (unit step,
impulse, ramp)
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SSE for a Unit-Step Input

ess = lim
s→0

sE (s), if system is stable

We now want to find ess for any given G(s)

Recall (from Module 04 and Exam I) that E (s)
U(s) = 1

1 + G(s)
Then, what’s ess = e(∞) if u(t) = 1?

Answer: ess = 1
1 + Kp

, Kp = lims→0 G(s)

Kp is called the static position error constant

What would ess for Type 0 systems? Type 1?

Answer: Type 0, it’s constant (above), Types 1 and above, it’s 0

Conclusion 1: Type 0 systems track unit step with finite SSE

Conclusion 2: Type 1 or higher systems track unit step with 0 SSE
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SSE for a Unit-Step Input

ess = lim
s→0

sE (s) ,
E (s)
U(s) = 1

1 + G(s)

Then, what’s ess = e(∞) if u(t) = t?

Answer: ess = 1
Kv

, Kv = lims→0 sG(s)

Kv is called the static velocity error constant

What would ess for Type 0 systems? Type 1?

Answer: Type 0, it’s infinity! Why?

Conclusion 1: Type 0 systems cannot track unit ramp input

Conclusion 2: Type 1 systems track unit ramp step with finite SSE

Conclusion 3: Type 2 or higher systems track unit ramp unit step
with 0 SSE
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Summary of the Results

You should not memorize any of these results — you should be able
to derive all of these 9 results

Before you compute anything, verify that the system is stable
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Design Example 1

For the above given system, and assuming that u(t) = 1, find K
such that the SSE is as small as possible

Answer:

©Ahmad F. Taha Module 06 — Higher Order Systems, Stability Analysis, & Steady-State Errors 27 / 32



Higher Order Systems Stability Analysis Steady-State Errors

Design Example 2

Assume that u(t) = t, find K such that the SSE is zero
Answer: First, find the overall transfer function:

H(s) = C(s)
R(s) = (1 + ks) ω2

n
s2 + 2ζωns + ω2

n

Now, find E (s) then ess via FVT

E (s) = R(s)−C(s) =
(

s2 + 2ζωns − ω2
nks

s2 + 2ζωns + ω2
n

)
R(s) =

(
s2 + 2ζωns − ω2

nks
s2 + 2ζωns + ω2

n

)
1
s2

⇒ ess = e(∞) = lim
s→0

sE (s) = lim
s→0

s
(

s2 + 2ζωns − ω2
nks

s2 + 2ζωns + ω2
n

)
1
s2 = 2ζωn − ω2

nk
ω2

n

We want ess = 0 ⇒ set k = 2ζ
ωn

to achieve that
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Design Example 3

For the above given system, and assuming that

G(s) = K
s3 + s2 + 2s − 4 ,

obtain the SSE for unit step input when K = 1, 5, or 10.
(1) First, we have to find the range for K s.t. system (CLTF) is stable
(2) Routh-Array for s3 + s2 + 2s + K − 4 = 0:

s3 1 2
s2 1 K − 4
s1 6− K
s0 K − 4

⇒ system is stable if 4 < K < 6

(3) ∴ for K = 1, 10, SSE doesn’t exist. System is Type 0 ⇒ for K = 5,
SSE is: ess = 1

1 + G(0) = −4
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Design Example 4

For the above given system, assume that

G(s) = 1
s3 + s2 + 2s − 0.5 , C(s) = 1 + K

s .

For K ≥ 0, obtain the range of K such that the CLTF is stable

Do this problem at home

Solution: 0 < K < 0.75
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Course Progress
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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