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Module 04 Outline

In this module, we present basic mathematical optimization principles. The
following topics are covered1:

General introduction to optimization

Convex optimization

Linear programming, SDP

Mixed-integer programming

Relaxations

KKT optimality conditions

Optimization problems solvers

1Much of the material presented in this module can be found in [Taylor, 2015; Boyd &
Vandenberghe, 2004]
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Optimization — 1

Given a function to be minimized, f(x), x ∈ Rn

x0 is a global minimum of f(x)⇒ f(x0) ≤ f(x) for all x

x0 is a local minimum of f(x)⇒ f(x0) ≤ f(x) for
{x ∈ Rn; ‖x− x0‖ ≤ ε, ε > 0}

Convexity:
Function — f(x) is convex if:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)
for all 0 ≤ α ≤ 1

Set — X is convex if x, y ∈ X ⇒ αx+ (1− α)y ∈ X

If g(x) is convex, then X = {x | g(x) ≤ 0} is convex

Convex Optimization Problem

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m

f(x), gi(x) are all convex ⇒ any local minimum is a global minimum
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Examples of Convex Functions

Functions mapping R→ R:
Affine (ax+ b), exponential (eax)

Powers (xa; a ≥ 1, a ≤ 0), powers of absolute value (|x|p; p ≥ 1)
Functions mapping Rn → R:

Affine (a>x+ b)

Vector norms (‖x‖p =
(∑n

i=1 |x|
p
) 1

p , p ≥ 1 )
Functions mapping Rn×m → R:

Affine (f(X) = trace(A>X) + b)

Matrix norms (‖X‖2 = σmax(X) =
√
λmax(X>X))

©Ahmad F. Taha Module 04 — Optimization and KKT Conditions 4 / 28



Optimization Intro LPs & MIPs SDPs QCP & Relaxations Optimality Conditions Optimization Solvers References

Tractability & Linear Programs

Computational tractability:
Convex optimization: easy to solve, polynomial-time

Nonconvex optimization: difficult to solve, NP-hard2

Linear programming:
f(x) = cTx

Affine constraints: gi(x) = aTi x− bi (usually as vector: Ax ≤ b)

Easiest type of optimization

Solvable in polynomial time

Quadratic programming with f(x) = xTQx is also easy if Q is symmetric
positive semi-definite

Is it convex? See next slide

2NP-hard: no polynomial-time (efficient) algorithm can exist
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Convexity of a Quadratic Function

Solution:
Given that f(x) = x>Qx, we apply the definition of convex function.

αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≥ 0.

Substituting for f(x) into the LHS of the previous equation yields:

αx>Qx+ (1− α)y>Qy − (αx+ (1− α)y)>Q(αx+ (1− α)y)

= α(1−α)x>Qx−2α(1−α)x>Qy+α(1−α)y>Qy = α(1−α)(x−y)>Q(x−y)

Define z = x− y ⇒
α(1− α)z>Qz

Since 0 ≤ α ≤ 1, Q = Q> � and ∀ z ⇒

α(1− α)z>Qz ≥ 0
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Mixed-Integer Programming

MIP

min
x,y

f(x, y)

s.t. gi(x, y) ≤ 0, i = 1, ...,m
yi ∈ Z (the integers)

NP-hard even when f and gi are all linear

yi ∈ Z is nononvex

Very common in CPS planning problems

Even more relevant in smart grids: unit commitment problem, expansion
models, . . .
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Semidefinite Programming

Hermitian: X = X∗ (conjugate transpose), X ∈ Cn×n

Definition: z∗Xz ≥ 0 for all z ∈ Rn

Equivalent: all eigs. of X nonnegative, all principal minors nonnegative

Notation: X � 0

X � 0 is convex constraint

Proof : Suppose X,Y � 0. Then

z∗(αX + (1− α)Y )z = αz∗Xz + (1− α)z∗Y z ≥ 0
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Semidefinite Programming — 2

Semidefinite Program (SDP)

min
X

trace(CX)

s.t. trace(AiX) = bi , X � 0

Semidefinite Program (SDP) — Form 2

min
x

c>x

s.t. F (x) = F0 +
n∑
i=1

Fixi � 0︸ ︷︷ ︸
Linear Matrix Inequality (LMI), Fi=F>

i

SDP: linear cost function, LMI constraints — Convex, 1 minimum

Generalization of LP (don’t solve LP as SDP)

SDP’s can be solved in polynomial-time using interior point methods
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LMIs

A system of LMIs F1(x), F2(x), . . . ,� 0 can be represented as a single
LMI:

F (x) =


F1(x)

F2(x)
. . .

Fm(x)

 � 0

For an Rm×n matrix A, the inequality Ax ≤ b can be represented as m
LMIs:

bi − a>i x ≥ 0, i = 1, 2, . . . ,m

Most optimization solvers cannot handle “ � ”⇒ replace it with “ � ”

Example: Lyapunov’s A>P + PA ≺ 0 is an LMI
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LMI Example

Lyapunov’s Theorem
Real parts of eig(A) are negative iff there exists a real symmetric positive
definite matrix P = P> � 0 such that:

A>P + PA ≺ 0.

Can we write Lyapunov’s inequality as an LMI?

Define: P =


x1 x2 . . . xn
x2 xn+1
...
xn x2n−1 . . . xm

 , m = (n+1)n
2 : # of Variables

P1 =


1 0 . . . 0
0 0
...
0 0 . . . 0

 , P2 =


0 1 . . . 0
1 0
...
0 0 . . . 0

 , . . . , Pm =


0 0 . . . 0
0 0
...
0 0 . . . 1


⇒ A>P + PA =

∑m

i=1 xi(A
>Pi + PiA) = −x1F1 − x2F2 − . . . xmFm ≺ 0

is an lmi
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Example — Convex Quadratic Functions

Is the quadratic function

f(x) = x>

[1 2 2
0 1 2
0 0 0

]
x

indefinite, positive definite, negative definite, positive semidefinite, or negative
semidefinite?

1 Start with finding the leading principal minors? NO!

2 Need to symmetrize f(x):

f(x) = 1
2x
>(Q+Q>)x = 1

2x
>

[2 2 2
2 2 2
2 2 0

]
x

3 From the principal minors, we conclude that the quadratic form is
indefinite
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Most Popular LMIs

LMIP — find a feasible x such that F (x) � 0

– Example: Lyapunov theorem

EVP/PDP — eigenvalue problem (EVP) is to minimize the maximum
eigenvalue of a matrix A(x) that depends affinely on a variable subject to
an LMI constraint

– Example: Finding the best H∞ robust controller: stabilization + good
performance
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Example — Eigenvalue Optimization

Suppose A(x) ∈ Cn×n is a linear function of x
Objective: minimize the maximum eigenvalue of A(x):

min
x,λ

λ

s.t. λ is the largest eig. of A(x)

Eigenvalue:

A(x)v = λv ⇒ v∗A(x)v = λv∗v ⇒ v∗A(x)v
v∗v

= λ

⇒ max
v∈Cn

v∗A(x)v
v∗v

= λmax

⇒ λmaxv
∗Iv ≥ v∗A(x)v ∀v

Hence, optimization problem can be equivalently written as:

min
λ

λ min
λ

λ

s.t. v∗(λI −A(x))v ≥ 0 ∀v s.t. λI −A(x) � 0
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Quadratic Optimization Problems

Quadratic Constrained Problem (QCP)

min
x

x∗Cx

s.t. x∗Aix ≤ bi

Solvability:
– If C � 0 and Ai � 0, solvable in polynomial time

– If any are not positive semi-definite (PSD), problem becomes NP-hard
Applications:

– Binary constraints: x ∈ {0, 1} ⇔ x2 = x

– AC power flow in power systems

– Both examples are nonconvex
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Relaxations

Hard problem (exact):
P1 : min

x∈X
f(x)

Easier, relaxed problem:
P2 : min

x∈Y
f(x), X ⊂ Y

Facts:
– (Obj. of P2) ≤ (Obj. of P1)

– if x is optimal for relaxation and feasible for exact, x is
optimal for exact

* Proof: Suppose x is relaxed optimal and feasible suboptimal for exact
problem ⇒ ∃ y s.t. f(y) < f(x), y ∈ X. But by relaxation, y ∈ Y , and
therefore x is not relaxed optimal — a contradiction
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SDP Relaxations

SDP can be written:

min
x

trace(xx∗C)

s.t. trace(xx∗Ai) ≤ bi
X = xx∗ equivalent to: X � 0, rank(X) = 1

min
X

trace(XC)

s.t. trace(XAi) ≤ bi
X � 0
rank(X) = 1

Removing a constraint enlarges the feasible set, i.e. relaxation:

min
X

trace(XC)

s.t. trace(XAi) ≤ bi
X � 0

If solution X∗ has rank 1, then relaxation is tight

Feasible, optimal exact solution is Cholesky: X = xx∗
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Linear Relaxation

Consider the following optimizaton problem:

min
x

x1(x2 − 1)

s.t. x1 ≥ 1
x2 ≥ 2
x1x2 ≤ 3

Clearly, this problem is not convex (objective & a constraint)
Relaxation: let y = x1x2, OP becomes:

min
x,y

y − x1

s.t. x1 ≥ 1
x2 ≥ 2
y ≤ 3

y − 2x1 − x2 + 2︸ ︷︷ ︸
=(x1−1)(x2−2)

≥ 0

Last constraint guarantees that y 6= −∞
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Solving Unconstrained OPs

Objective:
minimize
x∈Rn

f(x)

Necessary & Sufficinet Conditions for Optimality
x∗ is a local minimum of f(x) iff:

1 Zero gradient at x∗:
∇xf(x∗) = 0

2 Hessian at x∗ is positive semi-definite:

∇2
xf(x∗) � 0

For maximization, Hessian is negative semi-definite
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Solving Constrained OPs

Main objective: find/compute minimum or a maximum of an objective
function subject to equality and inequality constraints

Formally, problem defined as finding the optimal x∗:

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

– x ∈ Rn

– f(x) is scalar function, possibly nonlinear

– g(x) ∈ Rm, h(x) ∈ Rl are vectors of constraints

Main Principle
To solve constrained optimization problems: transform constrained
problems to unconstrained ones.

How?
Augment the constraints to the cost function.
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KKT Conditions

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

Define the Lagrangian: L(x, λ, µ) = f(x) + λTh(x) + µT g(x)

Optimality Conditions
The constrained optimization problem (above) has a local minimizer x∗ iff
there exists a unique µ∗ such that:

1 ∇xL(x∗, λ∗, µ∗) = ∇xf(x) + λ∗T∇xh(x∗) + µ∗T∇xg(x∗) = 0

2 µ∗j ≥ 0 for j = 1, . . . ,m

3 µ∗jgj(x∗) = 0 for j = 1, . . . ,m

4 gj(x∗) ≤ 0 for j = 1, . . . ,m

5 hi(x∗) = 0 for i = 1, . . . , l (if x∗, µ∗, λ∗ satisfy 1–5, they are candidates)

6 Second order necessary conditions (SONC): ∇2
xL(x∗, λ∗, µ∗) � 0
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KKT Conditions — Example3

Find the minimizer of the following optimization problem:

minimize
x

f(x) = (x1 − 1)2 + x2 − 2

subject to g(x) = x1 + x2 − 2 ≤ 0
h(x) = x2 − x1 − 1 = 0

First, find the Lagrangian function:

L(x, λ, µ) = (x1 − 1)2 + x2 − 2 + λ(x2 − x1 − 1) + µ(x1 + x2 − 2)

Second, find the conditions of optimality (from previous slide):
1 ∇xL(x∗, λ∗, µ∗) =

[
2x∗1 − 2− λ∗ + µ∗ 1 + λ∗ + µ∗

]>
=
[
0 0

]>
2 µ∗(x∗1 + x∗2 − 2) = 0
3 µ∗ ≥ 0
4 x∗1 + x∗2 − 2 ≤ 0
5 x∗2 − x

∗
1 − 1 = 0

6 ∇2
xL(x∗, λ∗, µ∗) = ∇2

xf(x∗) + λ∗∇2
xh(x∗) + µ∗∇2

xg(x∗) � 0

=
[

2 0
0 0

]
+ λ∗

[
0 0
0 0

]
+ µ∗

[
0 0
0 0

]
� 0

3Example from [Chong & Zak, 2011]
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Example — Cont’d

To solve the system equations for the optimal x∗, λ∗, µ∗, we first try
µ∗ > 0.
Given that, we solve the following set of equations:

1 2x∗1 − 2− λ∗ + µ∗ = 0
2 1 + λ∗ + µ∗ = 0
3 x∗1 + x∗2 − 2 = 0
4 x∗2 − x

∗
1 − 1 = 0

⇒ x∗1 = 0.5, x∗2 = 1.5, λ∗ = −1, µ∗ = 0

But this solution contradicts the assumption that µ∗ > 0

Alternative: assume µ∗ = 0⇒ x∗1 = 0.5, x∗2 = 1.5, λ∗ = −1, µ∗ = 0

This solution satisfies g(x∗) ≤ 0 constraint, hence it’s a candidate for
being a minimizer

We now verify the SONC: L(x∗, λ∗, µ∗) =
[

2 0
0 0

]
� 0

Thus, x∗ =
[
0.5 1.5

]> is a strict local minimizer
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OPs Taxonomy

Figure from:
http://www.neos-guide.org/content/optimization-introduction
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Solvers

Solving optimization problems require few things
1 Modeling the problem
2 Translating the problem model (constraints and objectives) into a modeling

language (AMPL, GAMS, MATLAB, YALMIP, CVX)
3 Choosing optimization algorithms solvers (Simplex, Interior-Point,

Brand & Bound, Cutting Planes,...)
4 Specifying tolerance, exit flags, flexible constraints, bounds, ...

Convex optimization problems: use cvx (super easy to install and code)

MATLAB’s fmincon is always handy too (too much overhead, often fails
to converge for nonlinear optimization problems)

Visit http://www.neos-server.org/neos/solvers/index.html

Check http://www.neos-guide.org/ to learn more
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Complexity

Clearly, complexity of an OP depends on the solver used

Example: most LMI solvers use interior-point methods

Complexity: primal-dual interior-point has a worst-case complexity
O(m2.75L1.5)

– m : #ofV ariables, L : #ofConstraints

– Applies to a set of L Lyapunov inequalities

– Typical performance: O(m2.1L1.2)
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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