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Module 04 Outline

In this module, we present basic mathematical optimization principles. The
following topics are covered®:

@ General introduction to optimization
o Convex optimization

o Linear programming, SDP

@ Mixed-integer programming

o Relaxations

o KKT optimality conditions

@ Optimization problems solvers

Much of the material presented in this module can be found in [Taylor, 2015; Boyd &
Vandenberghe, 2004]
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Given a function to be minimized, f(z), z € R"
@ zo is a global minimum of f(z) = f(zo) < f(x) for all z

@ x¢ is a local minimum of f(z) = f(zo) < f(x) for
{z e R"; ||z — zo]| < €, >0}
Convexity:
e Function — f(x) is convex if:

flaz + (1 - a)y) < af(z) + (1 -a)f(y)
foral0<a<1

o Set — X isconvex if x,y e X = ax+(l—a)ye X

o If g(x) is convex, then X = {z | g(z) < 0} is convex

Convex Optimization Problem

min f(x)

rER™
s.t. gi(z) <0,i=1,...m

f(z), gi(z) are all convex = any local minimum is a global minimum
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Examples of Convex Functions

Functions mapping R — R:
o Affine (axz + b), exponential (e*%)

@ Powers (2% a > 1,a < 0), powers of absolute value (|z|?;p > 1)
Functions mapping R" — R:
o Affine (a'x +b)

1
@ Vector norms (||z]|, = (Z:.l:l |x|p)P ,p>1)
Functions mapping R™*™ — R:
o Affine (f(X) = trace(AT X) +b)

@ Matrix norms (||X||2 = omax(X) = v/ Amax(X T X))
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Tractability & Linear Programs

Computational tractability:

o Convex optimization: easy to solve, polynomial-time

@ Nonconvex optimization: difficult to solve, NP-hard?
Linear programming:
o flz)=c"x
o Affine constraints: g;(x) = af x — b; (usually as vector: Az < b)
o Easiest type of optimization

@ Solvable in polynomial time

Quadratic programming with f(z) = 27 Qx is also easy if Q is symmetric
positive semi-definite

@ Is it convex? See next slide

2NP-hard: no polynomial-time (efficient) algorithm can exist
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Convexity of a Quadratic Function

Solution:

o Given that f(z) = 2" Qx, we apply the definition of convex function.
af(z)+ (1 —a)f(y) — flex+ (1 —-a)y) 2 0.
@ Substituting for f(x) into the LHS of the previous equation yields:
a2 Qz + (1 - a)y" Qy — (az + (1 - a)y) TQ(az + (1 — a)y)
= a(l-a)z' Qr—2a(1-a)z' Qy+a(l-a)y' Qy = a(l-a)(z—y) ' Q(z—y)

@ Definez =z -y =
ol —a)z' Qz

0 Since0<a<1,Q=Q" > and Vz =

a(l—a)z'Qz >0
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Mixed-Integer Programming

min  f(z,y)

z,y

s.t. gi(z,y) <0,i=1,....m
yi € Z (the integers)

@ NP-hard even when f and g; are all linear

y; € Z is nononvex
@ Very common in CPS planning problems

@ Even more relevant in smart grids: unit commitment problem, expansion
models, ...
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Semidefinite Programming

Hermitian: X = X* (conjugate transpose), X € C"*"

o Definition: z2* Xz >0 for all z € R"

o Equivalent: all eigs. of X nonnegative, all principal minors nonnegative
@ Notation: X >0

e X > 0 is convex constraint

Proof: Suppose X,Y = 0. Then

ZaX+(1-a)Y)z=az"Xz+(1—-a)z"Y22>0
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Semidefinite Programming — 2

Semidefinite Program (SDP)

SDPs
O@00000

n}}n trace(CX)
s.t. trace(4; X) =0b;, , X =0
Semidefinite Program (SDP) — Form 2

. T
min cz

s.t. F(z) = Fo + Z Fiz; = 0

=1
Linear Matrix Inequality (LMI), F,izFiT

@ SDP: linear cost function, LMI constraints — Convex, 1 minimum
@ Generalization of LP (don’t solve LP as SDP)

@ SDP’s can be solved in polynomial-time using interior point methods
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@ A system of LMIs Fi(x), Fo(z),...,> 0 can be represented as a single
LMI:
Fi(x)
Fy(x)
F(x) = . =0

Fr(x)

@ For an R™*™ matrix A, the inequality Az < b can be represented as m
LMls:
bi—ajz>0, i=1,2,...,m

@ Most optimization solvers cannot handle “ > ” = replace it with “ > ”

o Example: Lyapunov's AT P + PA < 0 is an LMI
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LMI Example

Lyapunov’'s Theorem

Real parts of eig(A) are negative iff there exists a real symmetric positive
definite matrix P = PT > 0 such that:

ATP+PA=<DO.

e Can we write Lyapunov’s inequality as an LMI?

X1 T2 In
_ T2 Tntl (nt1)
o Define: P = | . , m = 522 4 of Variables
Tn To2n—1 Tm
1 0 0 0 1 0 0O 0 ... O
0 O 1 0 0 O
P= . Py= | Py =
o 0 ... O o 0 ... O o o0 ... 1

= ATP + PA = 221 xl(ATP, + PZA) = —x1F1 —x9Fs — ...z <0

IS AN LMI
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Example — Convex Quadratic Functions

Is the quadratic function

1 2 2
f@y=z"|0 1 2|z
0 0 O

indefinite, positive definite, negative definite, positive semidefinite, or negative
semidefinite?

@ Start with finding the leading principal minors? NO!

@ Need to symmetrize f(x):

1 1 2 2 2
fl@)=z2"(Q+QNzr==z" 2 2 2|z
2 2 2 2 0

© From the principal minors, we conclude that the quadratic form is
indefinite
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Most Popular LMIs

LMIP — find a feasible = such that F'(z) > 0

Example: Lyapunov theorem

EVP/PDP — eigenvalue problem (EVP) is to minimize the maximum
eigenvalue of a matrix A(x) that depends affinely on a variable subject to
an LMI constraint

Example: Finding the best Ho, robust controller: stabilization + good
performance
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Example — Eigenvalue Optimization

Suppose A(z) € C**" is a linear function of z
o Objective: minimize the maximum eigenvalue of A(z):
min A
T, A
s.t. A is the largest eig. of A(z)

o Eigenvalue:

*A
Alz)v=x v = vAl@)v=XI"v = v*ﬂ =A
v*v
= max M — )\max
veC™  v*v

= Amaxv v > v A(z)v Yo

@ Hence, optimization problem can be equivalently written as:

min A min A

A A
s.t. (A — A(z))v >0 Yo s.t. M —A(z) =0
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Quadratic Optimization Problems

Quadratic Constrained Problem (QCP)

min " Cx
x
s.t. " Az < b;

Solvability:
— If C =0 and A; = 0, solvable in polynomial time

— If any are not positive semi-definite (PSD), problem becomes NP-hard
Applications:
— Binary constraints: z € {0,1} & 2? ==

— AC power flow in power systems

— Both examples are nonconvex
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Relaxations

e Hard problem (exact):
Py : min f(x)

reX

o Easier, relaxed problem:

P : minf(z), XCVY
zeY
o Facts:
— (Obj. of P;) < (Obj. of P1)

— IF IS OPTIMAL FOR RELAXATION AND FEASIBLE FOR EXACT, x IS
OPTIMAL FOR EXACT

* Proof: Suppose z is relaxed optimal and feasible suboptimal for exact
problem = 3y s.t. f(y) < f(x), y € X. But by relaxation, y € Y, and
therefore x is not relaxed optimal — a contradiction
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SDP Relaxations

@ SDP can be written:

mzin trace(zx*C')

s.t. trace(zz” A;) < b;
e X = zz” equivalent to: X > 0, rank(X) =1

min trace(X C)

X
s.t. trace(X A;) < b;
X >0
rank(X) =1

@ Removing a constraint enlarges the feasible set, i.e. relaxation:
min trace(XC)
X

s.t. trace(X A;) < b;
X >0

If solution X™ has rank 1, then relaxation is tight

o Feasible, optimal exact solution is Cholesky: X = xx*
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Linear Relaxation

@ Consider the following optimizaton problem:

min z1(z2 — 1)
x
s.t. xr1 > 1
X2 2 2
X1X2 S 3

o Clearly, this problem is not convex (objective & a constraint)

o Relaxation: let y = z1x2, OP becomes:

A
s.t. x> 1
xro > 2
y<3

y—2r1 —22+22>0
| S ——
=(z1-1)(w2—-2)

@ Last constraint guarantees that y # —cco
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Solving Unconstrained OPs

Objective:

minimize f(z)

Optimization Solvers

0000

References

Necessary & Sufficinet Conditions for Optimality

x™ is a local minimum of f(x) iff:

@ Zero gradient at x*:
Vaf(z®) =0

@ Hessian at ™ is positive semi-definite:

Vif(z*) =0

@ For maximization, Hessian is negative semi-definite
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Solving Constrained OPs

e Main objective: find/compute minimum or a maximum of an objective
function subject to equality and inequality constraints

o Formally, problem defined as finding the optimal z*:
min f(z)
subject to g(z) <0
h(z) =

-z eR”
— f(z) is scalar function, possibly nonlinear

— g(z) € R™, h(z) € R! are vectors of constraints

Main Principle

To solve constrained optimization problems: transform constrained
problems to unconstrained ones.

How?
Augment the constraints to the cost function.
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KKT Conditions

min f(z)
subject to  g(z) <0
h(z) =0
o Define the Lagrangian: L(x, A\, 1) = f(z) + ATh(x) + u g(x)

Optimality Conditions

The constrained optimization problem (above) has a local minimizer z* iff
there exists a unique p* such that:

O V.L(z* N\, p*) = Vaf(x)+ NTVoh(z*) + w ' Vaeg(z®) =0

Q@ p; >20forj=1,...,m

Q pjgi(x*)=0forj=1,...,m

Q gij(z")<0forj=1,...,m

@ hi(z")=0fori=1,...,1 (if 2, u*, \" satisfy 1-5, they are candidates)

@ Second order necessary conditions (SONC): V2L£(z*,\*, u*) = 0
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KKT Conditions — Example3

Find the minimizer of the following optimization problem:
minimize f(z) = (z1 — 1)2 + 22 — 2
x

subject to  g(z) =1+ 22 —2<0
h(z) =22 —21—1=0

o First, find the Lagrangian function:
Lz p) = (1 —1)> + 22— 24+ Mo —z1 — 1) + p(z1 + 22 — 2)
@ Second, find the conditions of optimality (from previous slide):
O VoLe* A p*) = [227 —2— N +p* 14X +p] =0 0]
Q p(zf+25-2)=0
Q@ u >0
Q x]+x5-2<0
Q xi—a27-1=0
Q VIL(z*, X p*) = Vif(z*) + N Vih(z*) + p*Vig(a*) = 0
2 «|0 O «|0 0
ui OO Al 2R R A

3Example from [Chong & Zak, 2011]
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Example — Cont'd

To solve the system equations for the optimal ™, \*, u*, we first try
w" > 0.

Given that, we solve the following set of equations:
Q 2z] —2—- N +pu*=0
Q@1+ N+u =0
Q xi+z5-2=0
Qx5 —27—-1=0
= z7 =05,25 =15\ =-1,u* =0

But this solution contradicts the assumption that p* > 0
Alternative: assume " =0= 2] =0.5,25 =15, A" =—-1, 4" =0
This solution satisfies g(z*) < 0 constraint, hence it's a candidate for

being a minimizer

We now verify the SONC: L(z*, \*, u*) = B 8] =0

Thus, 2™ = [0.5 1.5]T is a strict local minimizer
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Figure from:
http://www.neos-guide.org/content/optimization-introduction
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Solvers

@ Solving optimization problems require few things
© Modeling the problem

@ Translating the problem model (constraints and objectives) into a modeling
language (AMPL, GAMS, MATLAB, YALMIP, CVX)

© Choosing optimization algorithms solvers (Simplex, Interior-Point,
Brand & Bound, Cutting Planes,.. )

© Specifying tolerance, exit flags, flexible constraints, bounds, ...

o Convex optimization problems: use cvx (super easy to install and code)

MATLAB's fmincon is always handy too (too much overhead, often fails
to converge for nonlinear optimization problems)

o Visit http://www.neos-server.org/neos/solvers/index.html

Check http://www.neos-guide.org/ to learn more
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Complexity

o Clearly, complexity of an OP depends on the solver used
@ Example: most LMI solvers use interior-point methods

o Complexity: primal-dual interior-point has a worst-case complexity
O(m>T5L15)

— m: #ofVariables, L : #ofConstraints

Applies to a set of L Lyapunov inequalities

Typical performance: O(m*'L'?)
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ®
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