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Introduction to MPC — Example!

What is Model-Predictive Control?

o Compute first control action (for a
prediction horizon)

o Apply first control action
@ Repeat given updated constraints

o Essentially, solving optimization problems
sequentially

@ Use static-optimization techniques for
optimal control problems

o Example: minimizing LapTime, while
NotKillingPeople

@ MPC = Receding Horizon Control

1Some figures are borrowed from the references; see the end of the presentation file.

hmad F. Taha Module 06 — Introduction to Model Predictive Control



Introduction & Motivation MPC Modeling & Formulation Discrete LMPC Formulation Constrained MPC EMPC
o] le} [e]e]e} 00000000 O0000 0000

MPC Schematic

MPC leverages constrained static-optimization for optimal control problems

Objectives Model Constraints

Reference Optimizer | |nput Output
—> lE Plant ——>
Measurements
Plan |
Plan |

Plan |
Time

MPC: real-time, sequential optimization with constraints on states and inputs?

2Some figures are borrowed from the references; see the end of the presentation file.
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MPC Applications + Time Horizons

Computer control ns
us Power systems E |

Traction control ms

Seconds BUI|dIﬂgS

Refineries Minutes
Hours Nurse rostering

Train scheduling Days

Weeks Production planning \%\.—w

©Ahmad F. Taha Module 06 — Introduction to Model Predictive Control



Introduction & Motivation MPC Modeling & Formulation Discrete LMPC Formulation Constrained MPC EMPC
[e]e]e} @00 00000000 O0000 0000

MPC Constraints

@ We saw in this module that simple OCPs can be very hard to analyze and
solve

@ OCPs become harder with constraints on states and controls

Most physical systems have constraints

@ Safety limits (minimum and maximum capacities)
@ Actuator limits

© Overshoot constraints

MPC provides a great alternative to solving constrained OCPs, in
comparison to HJB, PMP
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More on MPC

@ At each instant, an MPC uses: current inputs, outputs, states

Introduction & Motivation

@ Using these signals, MPC computes (over a prediction horizon), a future
optimal control sequence

@ Solved online® (explicit MPC, EMPC, is solved offline)

past | future/prediction

T
set-point
cost function constraints
predicted predicted
e input | #(t; y(;)
0 Sor Optimizer Py @) Plant -
X
x(¢
I 1 X Plant ( ') t
predicted Model
1 i+l 4+2 L+ N, output
prediction horizon N, Model Predictive Controller

3Figures are borrowed from the references; see the end of the presentation file.
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Discrete LMPC Formulation
Linear MPC Problem

Np—1
min[i]rtnize Z J(Tttk, Uttk)
k=0
subject to z(t+k+1) = Az(t + k) + Bu(t + k)
uel
re kX

Ug = {ut, 805 ,ut+Np_1}
z(t) = z (fixed)

@ At each time-instant:

© Measure or estimate z(t)

@ Find optimal input sequence the PredictionHorizon (Np)

Up = {ut, ... 7“:+Np71}

© Implement first control action, uj
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Linear Discrete-Time MPC

Objective is to apply MPC for this LTI DT system:

z(k+1) = Ax(k)+ Bu(k)
ylk) = Cz(k), zeR"ueR",yeR?

Define ] Az(k+1) = 2(k + 1) — a(k) = AAz(k) + BAu(k) \

o Ay(k+1)=y(k+1) —y(k) = CAz(k + 1) = CAAz(k) + CBAu(k)

@ Hence: ‘ y(k+1) = y(k) + CAAz(k) + CBAu(k) ‘

@ Combining the boxed equations, we get:

Ax(k+1) A 0] |Ax(k) B
S| = Lo o) )+ s 2
xq(k+1) o x4 (k) r

y(k) (2)

I
Q
'EN
=
—
>
8
—~
-
N
[E—
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MPC Problem Construction

za(k+1) = ®gze(k) + ToAu(k)
Coza(k), zo € R"P. T, € R"TP*™ O, € RP¥"TP

<

=~
>

=
Il

o Assume u(k) and z(k) are available, we can get z(k + 1)

@ Hence, z, is known at k&

Control objective: construct control sequence

Au(k), Au(k+1),...,Au(k+ N, — 1), N, = PredictionHorizon

@ This sequence will give us the predicted state vectors

{za(k +1|k),...,za(k+ Nplk) } = {y(k+ 1|k),...y(k + Np|k) }
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MPC Construction

@ How can we construct u(k) given z(k)? Seems like a least-square problem
@ We can write the predicted future state variables as:
zq(k+1lk) = Dgazq(k)+TgAu(k)
ea(k+2k) = @qza(k+1lk) + Talu(k+1) = 2zq(k) + ®aTaAu(k) + TaAu(k + 1)

N, Np—1
zq(k + Nplk) O, Paq(k)+®,7 TqAu(k)+...+TqAu(k+ Np — 1)

@ Also, we can write the predicted outputs as:

za(k + 1]k) ég Tq Au(k)
zq(k + 2]k) L 54 ©.Tq Tq Au(k 4 1)
Cq . =Cq : zq(k)+Cq
zq(k + Nplk) EoNE oMr7lr, .. @.T. Ta Au(k + Np — 1)
N—_——
Y W ” NG,

@ Hence, we obtain:

Y=[y"(k+1lk) y (k+2k) ... y (k+Npk)] =Waak)+ ZAU

o Note: all variables written in terms of current state and future control
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Optimal MPC Construction

Y=[y (k+1lk) y (k+2k) ... y (k+Nplk)] =Waa(k)+ ZAU

o YW, Z, z, all given = determine AU (or Au(k),...,Au(k + N, — 1))

@ Assume that we want to minimize this cost function:

J(AU) = %(r V)T QUr—Y) + %AUTRAU, Q=Q " ~0,R=R"~0

Cost function = min deviations from output set-points + control actions

This is an unconstrained optimization problem = it’s easy to find AU™

AU*=(R+2Z"QZ) ' Z"Q(r — Wa,)

[
w
0]
(=
=
=}
(]
I
o

2

e o°J T
@ Note that SONC are satisfied as FINch R+7 QZ =0
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Optimal MPC Construction — 2

@ Now, we need to compute Au(k) (recall AU, Au(k)):

Au(k) = [I. O ... O]AU
= [Im O ... OJ(R+Z27Q2)'Z"Q(r — Wza)
@ Above equation can be written as:
Au(k) = K,r— K.Wzq(k), where:
K., = [In. O ... O](R+27Q2)'2Z'Q
@ Recall that z,(k) = [A;EI(J)C)} = above equation can be written as:
Au(k) = Krr— KmpcAz(k) — Kyy(k)
Au(k) = Krr— Kyy(k)— KmpcAx(k), where:
reference signals state-feedback gain
K, = [I. O ... O](R+27Q2)7'Z7Q
I, _ (0]
Kppe = KW {O] , Ky = K, W [IJ
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Solving Unconstrained MPC Problems, An Algorithm

@ Given CT LTI system, discretize your system (on MATLAB: c2d)
@ Specify your prediction horizon N,

© Find augmented dynamics:

za(k+1)
y(k)

®oza(k) + Tadu(k)
Coza(k)

Q@ Compute W, Z and formulate predicted output equation:

Y = Waa(k) + ZAU

@ Assign reference signals and weights on control action—formulate J(AU)

@ Compute optimal control AU, extract Au(k) and u(k)
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MPC Example

@ Consider this LTI, DT dynamical system, give by:

1 1
A=\, {I'B=|71]:¢ 1 0],N, =10
o Apply the algorithm:
© Augmented dynamics:
1 1 0 0.5
=10 1 0|,Ta=]|1][,Ca=[0 0 1]=
1 1 1 0
Q Find Z,W:
0.5 0 0 0 0 0 0 0 0 0 1
2 0.5 0 0 0 0 0 0 0 0 2
4.5 2 0.5 0 0 0 0 0 0 0 3
8 4.5 2 0.5 0 0 0 0 0 0 4
_ 12.5 8 4.5 2 0.5 0 0 0 0 0 _ 5
Z - 18 12.5 8 4.5 2 0.5 0 0 0 0 ’ W - 6
24.5 18 12.5 8 4.5 2 0.5 0 0 0 7
32 24.5 18 12.5 8 4.5 2 0.5 0 0 8
40.5 32 24.5 18 12.5 8 4.5 2 0.5 0 9
50 40.5 32 24.5 18 12.5 8 4.5 2 0.5 10
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@ Select an output reference signal (r = 2) and weight on control (R = 0.11)
@ Solve for the optimal AU and extract Au(k), u(k)

o Apply the first control and generate states and dynamics

@ Plots show optimal control with R = 0.17 (left) and R = 101 (right)

@ Putting more weight on control action is reflected in the left figure

25 T T T T T T T T 25
—
05 05
1 2 E 4 5 6 7 8 9 10 1 2 2 4 5 6 7 e ° 10
Sampling Instant Sampling Instant
1 T T T T T T T T 0.4
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o
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Sampling Instant Sampling Instant
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MPC With Constraints on Au(k)

@ Previously, we assumed no constraints on states or control
@ What if the rate of change of the control, Au(k), is bounded?

@ Solution: if Au™™® < Au(k) < Au™, then:
_Im _Aumin
|: Im :| Au(k) S |:Aumax:|

I, O ... O O Ay™nT]
Im O o o Agrax
0 —In o o0 AA(Z(?D — Ay™in
O  In o o “ < | Aumex
o) o) 10 —1In Au(k + NP - 1) —Aumin

i 0] O o I, | AU i Ay™e* ]
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MPC With Constraints on u(k)

What if the control, u(k), is bounded?

@ Solution: We know that:

u(k) =u(k—1) + Au(k) =u(k — 1)+ [I. O ... O]AU(k)
@ Similarly:
uw(k+1) = u(k)+Au(k+1) =u(k—1)+ [Im In O ... O]AU(k)
e Or:
u(k) Im Im Au(k)
u(k + 1) In In Im Au(k + 1)
. = : u(k—l)Jr :
wk+N,—1)]  Lim Im Im oo Inl [Au(k+N,—1)

@ Therefore, we can write:

U(k) = Eu(k — 1) + HAU (k)
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MPC With Control Constraints

@ Suppose that we have the following constraints:

umin S U(k)) S umax

@ We can represent the above constraints as:
7U(k}) 7umin
<
[UUC)] - [um}

U(k) = Eu(k — 1) + HAU(k)

@ Recall that

@ Since u(k — 1) is know, we obtain an Az < b-like inequality:

—H —u™® 4 Bu(k — 1)
{ H } AU(k) < {umax — Eu(k—1) ]

@ Input-Constrained MPC—a quadratic program:

minimize ~ J(AU) = %(7« -Y)'Q(r-Y)+ %AUTRAU

subject to {;I] AU(k) < {u + Bu(k - 1)}

u™ — Bu(k — 1)
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MPC With Output Constraints

@ Suppose that we require the output to be bounded:

ymin S Y(k) S ymax

() [
=[]

o Recall that Y (k) = Wxa(k) + ZAU (k)

@ Hence, we can write:

o Similar to the input-constraints, we obtain:

-7 —qymin Wz (k)
{ e ] AU () < [y%m W) ]

Output-Constrained MPC—a quadratic program:
minimize J(AU) = %(7‘ -Y)'Q(r-Y)+ %AUTRAU

. —Z —y™ L W, (k)
subject to { 7 ] AU (k) < {ym‘“‘ — Waa(k) }
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Constrained MPC as an Optimization Problem

@ As we saw in the previous 3—4 slides, MPC problem can be written as:
minimize J(AU) (quadratic function)

subject to g(AU) < 0 (linear constraints)

@ Hence, we solve a constrained optimization problem (possibly convex) for
each time-horizon

@ Linear constraints can include constraints on: input, output, or rate of
change (or their combination)

@ Plethora of methods to solve such optimization problems

@ How about nonlinear constraints? Can be included too!
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MPC Pros and Cons

Pros:
o Easy way of dealing with constraints on controls and states
o High performance controllers, accurate
@ No need to generate solutions for the whole time-horizon

o Flexibility: any model, any objective

Cons:
@ Main disadvantage: Online computations in real-time

o Solving constrained optimization problem might be a daunting task

Might be stuck with an unfeasible solution

@ Robustness and stability
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Explicit MPC

Solving MPC online might be a problem for applications with fast
sampling time (< 1msec)

o Solution: Explicit MPC (EMPC) — solving problems offline

o Basic idea: offline computations to determine all operating regions

@ EMPC controllers require fewer run-time computations

@ To implement explicit MPC, first design a traditional MPC

@ Then, use this controller to generate an EMPC for use in real-time control

@ Check http://www.mathworks.com/help/mpc/explicit-mpc-design.
html?refresh=true
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ®
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