Module 07 Dynamic State Estimation for Dynamical Systems

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems

Fmail: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha/index.html

October 19, 2015

Intro to DSE •000000

References

Module 07 Outline

In this module, we will:

- Introduce dynamic state estimation (DSE)
- ② Discuss classes of observers/estimators + Applications
- Briefly discuss stochastic estimators Kalman filter & Co.
- Deterministic observers
- Unknown input observers for linear & nonlinear systems
- Examples

CPSs & Dynamic State Estimation

- What is dynamic state estimation (DSE)?
 - Accurately depicting what's happening inside a system
- Precisely: estimating internal system states
 - In circuits: voltages and currents
 - Water networks: amount of water flowing
 - Chemical plants: concentrations
 - Robots and UAVs: location & speed
 - Humans: temperature, blood pressure, glucose level
- So how does having estimates help me?
 - Well, if you have estimates, you can do control
 - And if you do good control, you become better off!
- In power systems: DSE can tell me what's happening to generators & lines
 - ⇒ Preventing/Predicting Blackouts!

Intro to DSE 000000

Observers vs. State Estimators — What's the Difference?

- Dynamic observer: dynamical system that observes the internal system state, given a set of input & output measurements
- State estimator: estimates the system's states under different assumptions
- Estimators: utilized for state estimation and parametric identification
- Observers: used for deterministic systems, Estimators: for stochastic dynamical systems
- If statistical information on process and measurement is available, stochastic estimators can be utilized
- This assumption is strict for many dynamical systems
- Quantifying distributions of measurement and process noise is very challenging

Intro to DSF

0000000

Current DSE Methods — Stochastic Estimators

- Stochastic estimators:
 - Extended Kalman Filter (EKF)
 - Unscented Kalman filter (UKF)
 - Square-root Unscented Kalman filter (SRUKF)
 - Cubature Kalman Filter (CKF)
- Stochastic estimators used if distributions of measurement & process noise are available
- System dynamics:

$$x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}$$
$$y_k = h(x_k, u_k) + v_k$$

- $w_{k-1} \sim N(0, Q_{k-1})$ and $v_k \sim N(0, R_k)$: process & measurement noise
- Q_{k-1} and R_k : covariance of $q_{k-1} \& r_k$

Stochastic Estimator: The Extended Kalman Filter

- Most stochastic estimators have two main steps: predictions & updates
- EKF (=KF+Nonlinearities) algorithm:
- (1) Prediction:

Intro to DSE

0000000

 $\hat{x}_{k|k-1} = f(\hat{x}_{k-1|k-1}, u_{k-1})$ State esimate prediction:

 $P_{k|k-1} = F_{k-1}P_{k-1|k-1}F_{k-1}^{\top} + Q_{k-1}$ Predicted covariance estimate:

(2) Update:

Innovation or measurement residual: $\tilde{\boldsymbol{y}}_k = \boldsymbol{z}_k - h(\hat{\boldsymbol{x}}_{k|k-1})$

 $S_k = H_k P_{k|k-1} H_k^{\top} + R_k$ Innovation (or residual) covariance:

> $oldsymbol{K}_k = oldsymbol{P}_{k|k-1} oldsymbol{H}_k^ op oldsymbol{S}_k^{-1}$ Near-optimal Kalman gain:

 $\boldsymbol{P}_{k|k} = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_{k|k-1}$ Updated covariance estimate:

Updated state estimate: $\hat{\boldsymbol{x}}_{k|k} = \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k \tilde{\boldsymbol{y}}_k$

$$F_{k-1} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, k-1}, u_{k-1}}$$
, $H_k = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k-1}, k-1}}$

Intro to DSE

0000000

Current DSE Methods — Determinstic Estimators (Observers)

- Deterministic observers for:
 - LTI systems
 - LTI systems + Unknown Inputs
 - LTI systems + Unknown Inputs + Measurement Noise / Attack Vectors
 - Nonlinear systems (bounded nonlinearity)
 - Nonlinear systems + Unknown Inputs
 - Nonlinear systems + Unknown Inputs + Measurement Noise / Attack Vectors
 - LTI delayed systems
 - LTI delayed systems + Unknown Inputs
 - Hybrid systems
 - ... and many more
- Deterministic estimators used if measurement and process noise distributions are not available

What are Dynamical State Observers?

- Controllers often need values for the full state-vector of the plant
- This is nearly impossible in most complex systems
- Why? You simply can't put sensors everywhere, and some states are unaccessible
- Observer: a dynamical system that estimates the states of the system based on the plant's inputs and outputs ¹
- Who introduced observers? David Luenberger in 1963, Ph.D. dissertation

¹Figure from the 2013 ACC Workshop on: Robust State and Unknown Input Estimation: A Practical Guide to Design and Applications, by Stefen Hui and Stanislaw H. Żak.

Intro to DSF

000000

Luenberger Observer and Plant Dynamics

 $\bullet \mbox{ Plant Dynamics: } \left\{ \begin{array}{c} & \dot{x} = Ax + Bu \\ & y = Cx, \ x(0) \ \mbox{ not given} \end{array} \right.$

Observers Dynamics:
$$\begin{cases} & \dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \leftarrow Innovation \\ & \dot{\hat{x}} = A\hat{x} + Bu + LC(x - \hat{x}) \end{cases}$$

• Error dynamics ²:

$$\dot{e} = \dot{x} - \dot{\hat{x}} = (A - LC)(x - \hat{x}) \to 0$$
, as $t \to \infty$, iff $\lambda_i(A - LC) < 0$

²Figure from the 2013 ACC Workshop on: Robust State and Unknown Input Estimation: A Practical Guide to Design and Applications, by Stefen Hui and Stanislaw H. Żak.

Observers for LTI Systems Observer-Based Control (OBC)

000

- After designing an observer for an LTI system, obtain state estimates $(\hat{x}(t))$
- What to do with $\hat{x}(t)$? Well, use it for control \Rightarrow Observer-Based Control!
- OBC dynamics:

$$\begin{cases} & \dot{\hat{x}} = A\hat{x} + \mathsf{Innovation}(y,u) \\ & u = \mathsf{ControlLaw}(v), \quad v = \begin{bmatrix} \hat{x} & y & r \end{bmatrix} \end{cases}$$

DSE Techniques

Observer-Based Control — The Equations

Closed-loop dynamics:

$$\dot{x} = Ax - BK\hat{x}
\dot{\hat{x}} = A\hat{x} + L(y - \hat{y}) - BK\hat{x}$$

Or

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A-LC-BK \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

- Transformation: $\begin{vmatrix} x \\ e \end{vmatrix} = \begin{vmatrix} x \\ x \hat{x} \end{vmatrix} = \begin{vmatrix} I & 0 \\ I & -I \end{vmatrix} \begin{vmatrix} x \\ \hat{x} \end{vmatrix}$
- Hence, we can write:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \underbrace{\begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix}}_{A_{cl}} \begin{bmatrix} x \\ e \end{bmatrix}$$

- If the system is controllable & observable $\Rightarrow eig(A_{cl})$ can be arbitrarily assigned by proper K and L
- What if the system is stabilizable and detectable?

©Ahmad F. Taha

Unknown Input Observers (UIO) — Why?

- Deterministic observers work well without uncertainties
- Fail to accurately estimate the plant state under uncertainties
- Solution? Design of Unknown Input Observers (UIO)
- Unknown input u_2 models uncertainties, disturbances or nonlinearities
- Main idea: come up with a clever innovation term that nullifies that effect of unknown u_2

$$\begin{cases} & \dot{\hat{x}}_p = A_p \hat{x}_p + \mathsf{Innovation}(y, u_1) \\ & u_1 = \mathsf{ControlLaw}(v), \quad v = \begin{bmatrix} \hat{x}_p & y & r \end{bmatrix} \end{cases}$$

Most Well-Known UIOs

- Different UIOs have been developed:
 - UIOs for LTI systems [Bhattacharyya, 1978]
 - Hui and Żak [Hui & Żak, 2005]
 - Sliding-mode differentiator UIO [Floquet et al., 2006]
 - Hou and Müller observer [Zhang et al., 2012]
 - Observers for Lipschitz nonlinear systems [Chen & Saif, 2006]
 - Walcott-Żak sliding mode observer [Walcott & Zak, 1987]
 - Utkin's sliding mode observer [Utkin, 1992]
- Some observers have performance guarantees
- Most UIOs have assumptions related to the LTI SS matrices
- We will discuss some UIOs

System and UIO Dynamics — One UIO Architecture

• Plant Dynamics:

$$\dot{x}_p = A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2$$
 $y = C_p x_p, \ x_p(0) \ \text{not given}$

- ullet n states, m_1 known inputs, m_2 unknown inputs, p measurable outputs
- UIO Dynamics:

$$\dot{x}_c = A_c x_c + B_c^{(1)} y + B_c^{(2)} u_1,$$

 $\hat{x}_p = x_c + M y,$

• Error dynamics:

$$\dot{e} = \dot{x} - \dot{\hat{x}} = (I - MC)(A - LC)e$$

- Objective: design M, L, $A_c, B_c^{(1)}$ and $B_c^{(2)}$ such that $e(t) \to 0$ as $t \to \infty$
- Assumptions:
 - **1** Pair (A_p, C_p) is detectable
 - ② $\operatorname{rank}(C_pB_p^{(2)}) = \operatorname{rank}(B_p^{(2)})$ rank matching condition implies that there must be at least as many independent outputs as unknown inputs
 - $x_c(0) = (I MC_p)v$, v is arbitrary vector

UIO Design

- We want to estimate x_p
- The presented observer assumes unknown initial plant conditions
- UIO is motivated by writing x_p as:

$$x_p = (I - MC_p)x_p + MC_px_p = \underbrace{(I - MC_p)x_p}_{\text{Unknown}} + \underbrace{My}_{\text{Known}}$$

- **Objective**: analyze the unknown portion of x_p , that is $x_c = (I MC_p)x_p$
- We then have: $\dot{x}_c = (I MC_p)\dot{x}_p + \texttt{AddedConvergenceTerm}$
- Then, obtain $\hat{x}_p = x_c + My$
- Design matrix parameters such that unknown input u2 is nullified [Hui & Żak, 2005]

UIO Design — 2

• UIO Dynamics [Hui & Zak, 2005] (recall that $x_p = x_c + My$):

$$\begin{split} \dot{x}_c = & (I - MC_p) \dot{x}_p + \texttt{AddedConvergenceTerm} \\ = & (I - MC_p) \left(A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2 \right) + \texttt{AddedConvergenceTerm} \\ = & (I - MC_p) \left(A_p x_c + A_p My + B_p^{(1)} u_1 + \underbrace{L(y - C_p x_c - C_p My)}_{\texttt{AddedConvergenceTerm}} \right) \end{split}$$

$$\dot{x}_c = A_c x_c + B_c^{(1)} y + B_c^{(2)} u_1,$$

 $\hat{x}_p = x_c + My,$

where:

- * $(I MC_n)B_n^{(2)} = 0$
- * $A_c = (I MC_p)(A_p LC_p), B_c^{(2)} = (I MC_p)B_p^{(1)}$
- * $B_c^{(1)} = (I MC_n)(A_nM + L LC_nM)$

References

UIO Design Parameters

- Given $A_p, B_p^{(1)}, B_p^{(2)}, C_p$, find M, L such that $e(t) \to 0$ as $t \to \infty$
- Precisely, $M \in \mathbb{R}^{n \times p}$ is chosen such that $\left| (I MC_p) B_p^{(2)} = 0 \right|$
- Solution: $M = B_p^{(2)} \left(\left(C_p B_p^{(2)} \right)^{\dagger} + H_0 \left(I_p \left(C_p B_p^{(2)} \right) \left(C_p B_p^{(2)} \right)^{\dagger} \right) \right)$
- H₀ is a design matrix
- L is an added gain to improve the convergence of the estimated state (\hat{x}_n)
- **Note:** the above solution encapsulates the *projection* nature of MC_n : $(MC_p)^2 = MC_p$ and hence $I - MC_p$ is also a projection
- Basically, nullifying the unknown input by $(I MC_p)$
- * This UIO design can be easily extended to reduced-order designs; read [Hui & Żak, 2005] for more

Numerical Results for the UIO

- Given a stable LTI MIMO system with 2 known, 2 unknown inputs, 4 outputs.
- ullet Unknown inputs are all $u_2(t)=0.5\sin(t)$, SS matrices:

$$A_p = \begin{bmatrix} \begin{smallmatrix} 0 & & 1 & & 0 & & 0 & & 0 \\ 0 & & 0 & & 1 & & 0 & & 0 \\ 0 & & 0 & & 0 & & 1 & & 0 \\ 0 & & 0 & & 0 & & 0 & & 1 \\ -1 & & -5 & & -10 & & -10 & & -5 \end{bmatrix}, \, B_p^{(1)} = B_p^{(2)} = \begin{bmatrix} \begin{smallmatrix} 0 & & 0 \\ 0 & & 0 \\ 0 & & & 0 \\ 1 & & 0 & & 0 \\ 0 & & & & 0 \end{bmatrix}, \, C_p = \begin{bmatrix} \begin{smallmatrix} 1 & & 0 & & 0 & & 0 & & 0 \\ 0 & & 1 & & 0 & & 0 & & 0 \\ 0 & & 0 & & 1 & & 0 & & 0 \\ 0 & & 0 & & & 1 & & 0 & & 0 \\ 0 & & 0 & & & & 1 & & 0 \end{bmatrix}$$

• UIO state estimates converge to the actual states

Sliding Mode Observers — Introduction

- Sliding model control: nonlinear control method whose structure depends on the current state of the system
- Sliding mode observers (SMO): nonlinear observers driving state trajectories of estimation error to zero or to a bounded neighborhood
- SMOs have high resilience to measurement noise
- See [Utkin, 1992] for more on SMOs

System and SMO Dynamics — Second UIO Architecture

Plant Dynamics:

$$\dot{x}_p = A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2$$

 $y = C_p x_p$

- * **Assumption:** unknown input u_2 is bounded, i.e., $\|u_2\| \leq \rho$
- SMO Dynamics [Hui & Żak, 2005]:

$$\dot{\hat{x}}_p = A_p \hat{x}_p + B_p^{(1)} u_1 + L(y - \hat{y}) - B_p^{(2)} E(\hat{y}, y, \eta)
\hat{y} = C_p \hat{x}_p,$$

- ullet u_1 and y: readily available signals for the SMO
- $E(\cdot)$ is defined as (η is SMO gain):

$$E(\hat{y}, y, \eta) = \begin{cases} \eta \frac{F(\hat{y} - y)}{\|F(\hat{y} - y)\|_2}, & \text{if } F(\hat{y} - y) \neq 0\\ 0, & \text{if } F(\hat{y} - y) = 0. \end{cases}$$

ullet SMO design objective: find matrices F and L

DSE Techniques

SMO Design

- ullet $F \in \mathbb{R}^{m_2 imes p}$ satisfies: $FC_p = (B_p^{(2)})^{ op} P$
- ullet L is chosen to guarantee the asymptotic stability of A_p-LC_p
- Thus, for $Q = Q^{\top} \succ 0$, there is a unique $P = P^{\top} \succ 0$ such that P satisfies:

$$(A_p - LC_p)^{\top} P + P(A_p - LC_p) = -Q, \quad P = P^{\top} \succ 0$$

- ullet $E(\cdot)$ guarantees that e(t) is insensitive to the unknown input $u_2(t)$ and the estimation error converges asymptotically to zero
- * If for the chosen Q, no matrix F satisfies the above equality, another matrix Q can be chosen
- * A design algorithm (to find matrices F, L, P) is presented in [Hui & Żak, 2005]

- The SMO design problem boils down to solving matrix equalities
- Can we solve the matrix design problem using LMIs? Yes!
- We have two (nonlinear) matrix equations in terms of P, F, L:

$$(A_p - LC_p)^{\top} P + P(A_p - LC_p) = -Q$$

$$P = P^{\top}$$

$$FC_p = (B_p^{(2)})^{\top} P$$

* LMI trick: set Y = PL, rewrite above system of linear matrix equations as:

$$A_p^{\top}P + PA_p - C_p^{\top}Y^{\top} - YC_p = -Q$$

$$P = P^{\top}$$

$$FC_p = (B_p^{(2)})^{\top}P$$

SMO Design Using CVX

```
Sample CVX code:
cvx_clear
cvx_begin sdp quiet
variable P(n, n) symmetric
variable Y(n, p)
variable F(m2, p)
minimize(0)
subject to
Ap'*P + P*Ap - Y*Cp - Cp'*Y' <= 0
F*Cp-Bp2*P==0;
P >= 0
cvx_end
L = P \setminus Y;
```

©Ahmad F. Taha

Numerical Example

Intro to DSF

• Linearized dynamics of a power system:

$$A = \begin{bmatrix} -41 & 0 & 0 & 0 \\ 27.67 & -16.67 & -55.33 & 0 \\ 0 & 0.01 & -0.01 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, B_1 = \begin{bmatrix} 2 & 0 \\ 0 & 333.33 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, C^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

• Solving for P, L, F using CVX, we obtain:

$$L = \begin{bmatrix} -28.22 & -0.12 \\ 12.23 & -39.15 \\ -0 & 5.92 \\ 0.05 & 3.76 \end{bmatrix}, F = \begin{bmatrix} 4.89 & 0.42 \end{bmatrix}, P = \begin{bmatrix} 2.45 & 0 & 0 & 0.21 \\ 0 & 0.19 & 0.36 & 0.36 \\ 0 & 0.36 & 11.43 & -15.01 \\ 0.21 & 0.36 & -15.01 & 43.62 \end{bmatrix}$$

After simulating the observer, we obtain:

Dynamic Observers for NL Systems — Architecture $\#\ 1$

- Question: What if system dynamics are nonlinear?
- Answer: Use deterministic estimators for nonlinear systems
- System dynamics:

$$\dot{x} = \underbrace{Ax + B_1 u_1}_{\text{linear terms}} + \underbrace{\phi(x, u)}_{\text{nonlinearities}} + \underbrace{B_2 u_2}_{\text{unknown input:}}$$

- Nonlinear term in the dynamics $\phi(x,u)$ is:
 - Globally Lipschitz (Lipschitz Continuous):

$$\|\phi(x,u) - \phi(z,u)\| \le L\|x - z\|, L \ge 0$$

- One-sided Lipschitz:

$$\langle \phi(x, u) - \phi(z, u), x - z \rangle \le k_1 ||x - z||^2$$

- Quadratically inner-bounded:

$$(\phi(x,u) - \phi(z,u))^{\top} (\phi(x,u) - \phi(z,u)) \le k_2 ||x-z||^2 + k_3 \langle \phi(x,u) - \phi(z,u), x-z \rangle$$

- * Lipschitz continuity ⇒ quadratic inner-boundedness
- * Example: if $\phi(x) = \sin(x)$, then L = 1

Finding Lipschitz Constants — Examples

- Example 1: if $\phi(x) = x^2$, what is the Lipschitz constant L if x is defined on the interval [-2, 2]?
- Solution: applying the definition, we have:

$$\|\phi(x_2) - \phi(x_1)\| = |x_2^2 - x_1^2| = |x_2 - x_1||x_2 + x_1| \le 4|x_2 - x_1| \implies \boxed{L = 4}$$

- Example 2: find L if $\phi(x) = \begin{vmatrix} ax_1 + bx_2 \\ 1 \cos(cx_1) \end{vmatrix}$, $x \in \mathbb{R}^2_+$ and $a, b, c \in \mathbb{R}_+$
- Solution:

$$\begin{split} \|\phi(x) - \phi(z)\| &= \left\| \begin{bmatrix} ax_1 + bx_2 \\ 1 - \cos(cx_1) \end{bmatrix} - \begin{bmatrix} az_1 + bz_2 \\ 1 - \cos(cz_1) \end{bmatrix} \right\| \\ &= \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ \cos(cz_1) - \cos(cx_1) \end{bmatrix} \right\| = \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ -2\sin(0.5c(z_1 + x_1))\sin(0.5c(z_1 - x_1)) \end{bmatrix} \right\| \\ &\leq \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ 2\sin(0.5c(x_1 - z_1)) \end{bmatrix} \right\| \leq \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ c(x_1 - z_1) \end{bmatrix} \right\| \\ &= \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \begin{bmatrix} x_1 - z_1 \\ x_2 - z_2 \end{bmatrix} \right\| = \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} (x - z) \right\| \leq \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \right\| \|x - z\| \\ &\leq \sqrt{2} \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \right\| \|(x - z)\| \Rightarrow L = \sqrt{2} \max(a + b, c) \end{split}$$

Observer Design

Plant dynamics under unknown inputs:

$$\dot{x} = Ax + B_1 u_1 + \phi(x, u) + B_2 u_2$$

$$y = Cx$$

Observer dynamics [Zhang et al., 2012]:

$$\dot{\hat{x}} = A\hat{x} + B_1u_1 + \phi(\hat{x}, u) + L(y - C\hat{x})$$

- Matrix-gain L determined as follows:
 - **①** Given k_1, k_2, k_3 , solve this LMI for $\epsilon_1, \epsilon_2, \sigma$ and $P = P^{\top} \succ \mathbf{0}$:

$$\begin{bmatrix} A^{\top}P + PA + (\epsilon_1 k_1 + \epsilon_2 k_2)I_n - \sigma C^{\top}C & P + \frac{k_3 \epsilon_2 - \epsilon_1}{2}I_n \\ \left(P + \frac{k_3 \epsilon_2 - \epsilon_1}{2}I_n\right)^{\top} & -\epsilon_2 I_n \end{bmatrix} < 0$$

② Compute observer gain L:

$$L = \frac{\sigma}{2} P^{-1} C^{\top}$$

- Extension: reduced-order DSE
- Read [Zhang et al., 2012] to understand the derivation of the above LMI

©Ahmad F. Taha

Simulation Example

- Nonlinear power system, consider Lipschitz parameters: $\rho=\varphi=\mu=1$
- Using CVX, we solve for $P, \epsilon_1, \epsilon_2$ and σ : $\epsilon_1 = 0.0122, \epsilon_2 = 0.0144, \sigma = 6.424,$
- ullet Then, the observer gain-matrix $oldsymbol{L}$ is computed:

$$\boldsymbol{P} = \begin{bmatrix} 0.4894 & -0.017 & 0.062 & -0.46 \\ -0.01 & 0.005 & 0 & 0.006 \\ 0.062 & 0 & 0.77 & 0.02 \\ -0.46 & 0.006 & 0.02 & 0.49 \end{bmatrix}, \boldsymbol{L} = \frac{\sigma}{2} \boldsymbol{P}^{-1} \boldsymbol{C}^{\top} = \begin{bmatrix} -6.02 & 15.93 & 31.86 & 12.04 \\ -15.74 & 42.50 & 85.02 & 31.503 \\ 4.20 & 0.06 & 0.12 & -8.46 \\ -3.11 & 8.69 & 17.39 & 6.23 \end{bmatrix}$$

 Given L, plot the observer response given random estimator initial conditions:

Dynamic Observer for NL Systems — Architecture # 2

- Here, we introduce an observer design for a specific class of nonlinear systems with unknown inputs
- Observer design based on the methods presented in [Chen & Saif, 2006]
- Observer design assumes:
 - lacksquare B_2 is full-column rank
 - Nonlinear function is Lipschitz
- The design problem is formulated as an SDP

Observer Design for NL Systems

System dynamics:

$$\dot{x} = Ax + B_1 u_1 + \phi(x) + B_2 u_2$$

$$y = Cx$$

Proposed observer dynamics:

$$\dot{z} = Nz + Gu + Ly + M\phi(\hat{x})
\hat{x} = z - Ey$$

- Matrices E, K, N, G, L and M are obtained from the matrix equalities that ensure the asymptotic stability of estimation error
- * Lipschitz constant γ : $\|\phi(x_1) \phi(x_2)\| < \gamma \|x_1 x_2\|$
- Authors in [Chen & Saif, 2006] develop matrix equations that guarantee $e = x - \hat{x}$ converges to zero
- Can you re-derive the equations? Design matrix parameters s.t. $e \to 0$
- Read [Chen & Saif, 2006] to understand the design algorithm

©Ahmad F. Taha

Observer Design Algorithm for NL Systems

Algorithm 1 Observer with Unknown Input Design Algorithm

- 1: given parameters: A, B_1, B_2, C and γ (the Lipschitz constant)
- 2: **compute** matrices U, V, \bar{A} and $\bar{B_1}$:

$$U = -B_2(CB_2)^{\dagger}$$

$$V = I - (CB_2)(CB_2)^{\dagger}$$

$$\bar{A} = (I + UC)A$$

$$\bar{B}_1 = VCA$$

3: find matrices \bar{Y}, \bar{K} and a symmetric positive definite matrix P that are a solution for this LMI:

$$\begin{bmatrix} \mathbf{\Psi}_{11} & \mathbf{\Psi}_{12} \\ \mathbf{\Psi}_{12}^{\top} & I_{2n} \end{bmatrix} < 0$$

where

$$\Psi_{11} = \bar{A}^{\top} P + P \bar{A} + \bar{B_1}^{\top} \bar{Y}^{\top} \bar{Y} \bar{B_1} - C^{\top} \bar{K}^{\top} - \bar{K}C + \gamma I,$$

$$\Psi_{12} = \sqrt{\gamma} \left(P(I + UC) + \bar{Y}(VC) \right)$$

4: **obtain** matrices Y and K and the observer parameters N, G, L and M:

$$Y = P^{-1}\bar{Y}, K = P^{-1}\bar{K}$$

 $E = U + YV, M = I + EC$
 $N = MA - KC, G = MB_1$
 $L = K(I + CE) - MAE$

5: simulate the UIO given the computed matrices

SMO Design Using CVX

```
[p n] = size(C); [n m1] = size(B1); [n m2] = size(B2);
U = -B2*pinv(C*B2); V = eye(length(C*B2))-(C*B2)*pinv(C*B2);
cvx_begin sdp quiet
variable P(n,n) symmetric
variable Ybar(n,p)
variable Kbar(n,p)
minimize(1)
subject to
P >= 0:
-[((eye(n)+U*C)*A)*P + P*((eye(n)+U*C)*A) + ...
(V*C*A)'*Ybar' + Ybar*(V*C*A) - C'*Kbar' - Kbar*C + ...
gamma*eye(length(Kbar*C)) , sqrt(gamma)*(P*(eye(n)+U*C)+Ybar*(V*C));
(\operatorname{sqrt}(\operatorname{gamma})*(P*(\operatorname{eye}(n)+U*C)+Y\operatorname{bar}*(V*C)))', -\operatorname{eye}(n)] >= 0;
cvx end
Y = inv(P)*Ybar; K = inv(P)*Kbar;
E = U+Y*V; M = eve(n)+E*C;
N = M*A-K*C: G = M*B1:
L = K*(eve(p)+C*E)-M*A*E;
```

Numerical Example

Intro to DSF

Consider this dynamical system:

$$A = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & -1 \end{bmatrix}, B_1 = 0, B_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}^{\top}, \phi = \begin{bmatrix} 0.5\sin(x_2) \\ 0.6\cos(x_3) \\ 0 \end{bmatrix}, u_2 = 2\sin(5t)$$

• Applying the algorithm, we obtain:

$$U = \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, P = \begin{bmatrix} 50.25 & 0 & 0 \\ 0 & 0.89 & 0 \\ 0 & 0 & 50.25 \end{bmatrix}, Y = \begin{bmatrix} 0 & 0 \\ 0 & 1.3874 \\ 0 & -50.25 \end{bmatrix}$$

- ullet Compute matrices K, E, M, N, G, L and simulate the observer
- Converging estimates:

Comparison between DSE Techniques

Functionality/Characteristic	Kalman Filter Derivatives			
	EKF	UKF	CKF	Observer
System's Nonlinearities	Х	√	√	✓
Feasibility	_	_	_	×
Tolerance to Different Initial Conditions	X	X	×	✓
Tolerance to Unknown Inputs	X	X	X	✓
Tolerance to Cyber-Attacks	X	X	×	✓
Tolerance to Process & Measurement Noise	✓	✓	✓	✓
Guaranteed Convergence	_	_	_	✓
Numerical Stability	_	_	_	✓
Computational Complexity	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$

DSE Techniques

•0

References

Questions And Suggestions?

Thank You!

Please visit engineering.utsa.edu/~taha IFF you want to know more ©

References

References I

- Bhattacharyya, S. P. (1978). Observer design for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 23(3), 483-484.
- Chen, W., & Saif, M. (2006). Unknown input observer design for a class of nonlinear systems: an Imi approach. In American Control Conference, 2006.
- Floquet, T., Edwards, C., & Spurgeon, S. (2006). On sliding mode observers for systems with unknown inputs. In Variable Structure Systems, 2006. VSS'06. International Workshop on, (pp. 214-219).
- Hui, S., & Zak, S. (2005). Observer design for systems with unknown inputs. International Journal of Applied Mathematics and Computer Science, 15, 431-446.
- Utkin, V. I. (1992). Sliding modes in control and optimization, vol. 116. Springer-Verlag Berlin.
- Walcott, B., & Zak, S. (1987). State observation of nonlinear uncertain dynamical systems. Automatic Control, IEEE Transactions on, 32(2), 166-170.
- Zhang, W., Su, H., Wang, H., & Han, Z. (2012). Full-order and reduced-order observers for one-sided lipschitz nonlinear systems using riccati equations. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4968 - 4977. URL http://www.sciencedirect.com/science/article/pii/S1007570412002584