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In this module, we will:

@ Introduce dynamic state estimation (DSE)

Discuss classes of observers/estimators + Applications
Briefly discuss stochastic estimators — Kalman filter & Co.
Deterministic observers

Unknown input observers for linear & nonlinear systems

© 06 6 0 ©

Examples
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CPSs & Dynamic State Estimation

e What is dynamic state estimation (DSE)?
— Accurately depicting what's happening inside a system

@ Precisely: estimating internal system states
— In circuits: voltages and currents

— Water networks: amount of water flowing

Chemical plants: concentrations
— Robots and UAVs: location & speed
— Humans: temperature, blood pressure, glucose level

@ So how does having estimates help me?
— Well, if you have estimates, you can do control

— And if you do good control, you become better off!
@ In power systems: DSE can tell me what’s happening to generators & lines

= PREVENTING /PREDICTING BLACKOUTS!
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Observers vs. State Estimators — What's the Difference?

Dynamic observer: dynamical system that observes the internal system
state, given a set of input & output measurements

State estimator: estimates the system's states under different assumptions

Estimators: utilized for state estimation and parametric identification

@ Observers: used for deterministic systems, Estimators: for stochastic
dynamical systems

o If statistical information on process and measurement is available,
stochastic estimators can be utilized

This assumption is strict for many dynamical systems

Quantifying distributions of measurement and process noise is very
challenging
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Current DSE Methods — Stochastic Estimators

@ Stochastic estimators:
Extended Kalman Filter (EKF)

— Unscented Kalman filter (UKF)
— Square-root Unscented Kalman filter (SRUKF)
— Cubature Kalman Filter (CKF)

* Stochastic estimators used if distributions of measurement & process noise
are available

@ System dynamics:
xr = f(Tr_1,Uuk—1) + Wk_1

Yk = h(zk, ur) + vk

— wi—1 ~ N(0,Qk—1) and v ~ N(0, Ry): process & measurement noise

— Qr_1 and Ry: covariance of qx_1 & 7
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Stochastic Estimator: The Extended Kalman Filter

@ Most stochastic estimators have two main steps: predictions & updates
o EKF (=KF+Nonlinearities) algorithm:
(1) Prediction:

State esimate prediction:  @yp—1 = f(Zx—1)k—1, Ur—1)

Predicted covariance estimate: Ppy_1 = Fk,lPk,l‘k,lF;,l +Q_,

(2) Update:
Innovation or measurement residual: Y = 2k — h(&gpp—1)
Innovation (or residual) covariance: Sk = HkPk‘k,lﬂkT + Ry

Near-optimal Kalman gain: Ky = Pk‘k_lHZSIZl
Updated covariance estimate: Py, = (I — K Hy)Pyjp—1
Updated state estimate:  Zyx = Tijp—1 + Kr¥,

0 oh
Fk71:ff 7Hk:%

T 1|k—1>Uk—1 Tpip—1
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@ Deterministic observers for:

LTI systems

LTI systems + Unknown Inputs

LTI systems + Unknown Inputs + Measurement Noise / Attack Vectors
Nonlinear systems (bounded nonlinearity)

Nonlinear systems + Unknown Inputs

Nonlinear systems + Unknown Inputs + Measurement Noise / Attack
Vectors

LTI delayed systems
LTI delayed systems + Unknown Inputs
Hybrid systems

. and many more

* Deterministic estimators used if measurement and process noise
distributions are not available

©Ahmad F. Taha
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What are Dynamical State Observers?

@ Controllers often need values for the full state-vector of the plant
@ This is nearly impossible in most complex systems

o Why? You simply can't put sensors everywhere, and some states are
unaccessible

@ Observer: a dynamical system that estimates the states of the system
based on the plant's inputs and outputs *

@ Who introduced observers? David Luenberger in 1963, Ph.D. dissertation

moaton [+ &

Sensor y
Model

State Estimate

1Figure from the 2013 ACC Workshop on: Robust State and Unknown Input Estimation: A Practical Guide to
Design and Applications, by Stefen Hui and Stanislaw H. Zak.
hmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems

/ 36

8



Intro to DSE Observers for LTI Systems Estimators for Systems with Uls Observers for Nonlinear Systems DSE Techniques
0000000 @00 0000000000000 000000000 [e]e]

Luenberger Observer and Plant Dynamics

References

&= Ax + Bu

@ Plant Dynamics: y = Cz, 2(0) not given

8
|

Az + Bu+ L(y — §) + Innovation

Observers Dynamics: A + Bu+ LC(x — 2)

2
|

e Error dynamics 2:

é=i—2=(A—LO)(x—&) =0, ast — o0,iff \i(A - LC) <0

State Estimate

2Figure from the 2013 ACC Workshop on: Robust State and Unknown Input Estimation: A Practical Guide to
Design and Applications, by Stefen Hui and Stanislaw H. Zak.
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Observer-Based Control (OBC)
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00

DSE Techniques
00

o After designing an observer for an LTI system, obtain state estimates

(&

®)

References

@ What to do with £(¢)? Well, use it for control = Observer-Based Control!
e OBC dynamics:

©Ahmad F. Taha

& = AZ + Innovation(y, u)
u = ControlLaw(v), v =

@y 7]

u = ControlLaw(v)

T = Az + Bu

& = Az + Innovation(y, u)
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Observer-Based Control — The Equations

@ Closed-loop dynamics:
© = Ax— BKz%
& = Ai+Ly—-19) - BKz&

HE i
vt ][ ][]

@ Hence, we can write:
] [A-BK BK |[s
el 0 A—LC| |e

A

cl

If the system is controllable & observable = eig(Ac) can be arbitrarily
assigned by proper K and L

@ What if the system is stabilizable and detectable?

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems 11/ 36
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Unknown Input Observers (UIO) — Why?

@ Deterministic observers work well without uncertainties

o Fail to accurately estimate the plant state under uncertainties

@ Solution? Design of Unknown Input Observers (UIO)

@ Unknown input us models uncertainties, disturbances or nonlinearities

@ Main idea: come up with a clever innovation term that nullifies that
effect of unknown w2

&p = Api, + Innovation(y, u;)
u1 = ControlLaw(v), v = [fcp y r]

Uz

|

Ep = Apxp + B,(,l)ul —+ B,(,2)ug

L»O—v> u; = ControlLaw(v)

&p = Apd, + Innovation(y, u; )
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Most Well-Known UIOs

o Different UlOs have been developed:
— UlOs for LTI systems [Bhattacharyya, 1978]

Hui and Zak [Hui & Zak, 2005]

— Sliding-mode differentiator UIO [Floquet et al., 2006]

— Hou and Miiller observer [Zhang et al., 2012]

— Observers for Lipschitz nonlinear systems [Chen & Saif, 2006]
— Walcott-Zak sliding mode observer [Walcott & Zak, 1987]

Utkin's sliding mode observer [Utkin, 1992]
@ Some observers have performance guarantees
@ Most UlOs have assumptions related to the LTI SS matrices

@ We will discuss some UlOs

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems 13 /36
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System and UIO Dynamics — One UIO Architecture

@ Plant Dynamics:
Tp = Apxp + Bl(,mul + B,(f)ug
y = Cpzp, p(0) not given

@ n states, mi1 known inputs, m2 unknown inputs, p measurable outputs

UIO Dynamics:
Te = Acxe+ Bgl)y + B£2>u1,
Zp = e + My,
@ Error dynamics:
é=i—4=(I—-MC)A—-LC)e
o Objective: design M, L, AC,Bgl) and B£2) such that e(t) — 0 as ¢t — oo

o Assumptions:
@ Pair (A, Cp) is detectable

Q rank(CpBZE,Q)) = rank(Bz(f)) — rank matching condition implies that there
must be at least as many independent outputs as unknown inputs

Q z.(0) = (I — MCp)v, v is arbitrary vector

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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esign

o We want to estimate x,,
@ The presented observer assumes unknown initial plant conditions
@ UIO is motivated by writing z,, as:
p =T —MCplxp + MCpzp = (I — MCh)zp+ My
—_— ~~
Unknown Known
o Objective: analyze the unknown portion of x,, that is z. = (I — MC)p)x,
@ We then have: @, = (I — MC}p)&p + AddedConvergenceTerm
@ Then, obtain z, = z. + My

o Design matrix parameters such that unknown input uz is nullified [Hui &
Zak, 2005]
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UIO Design — 2

o UIO Dynamics [Hui & Zak, 2005] (recall that x, = x. + My):

e =(I — MCp)tp + AddedConvergenceTerm
= - MC,) (Apxp + B,(,l)ul + B;,Q)uz) + AddedConvergenceTerm

=(I — MCy) | Apze + AyMy + B{Pui + L(y — Cpae — C, My)

AddedConvergenceTerm
e =Acxe + Bgl)y + B£2)U1,
Tp =z + My,
where:
* (I—MCp)BY =0
* Ao = (I — MCy)(Ap — LCy), B = (I — MC,,)BY)
* B = (I = MC,)(ApM + L — LCp M)

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems



Intro to DSE Observers for LTI Systems Estimators for Systems with Uls Observers for Nonlinear Systems DSE Techniques References
0000000 [e]e]e} 00000@0000000 000000000 [e]e]

UIO Design Parameters

e Given Ap,Bl(,l),B;,Z),C , find M, L such that e(t) — 0 as t — oo

o Precisely, M € R"*? is chosen such that | (I — MCP)BZ(,Q) =0

@ Solution: | M = Bj(f) ((CpB;(;2>)T + Ho (IP - (CPBJEQ)) (CPB:E’Q))T))

@ Hy is a design matrix

o L is an added gain to improve the convergence of the estimated state (£;)
* Note: the above solution encapsulates the projection nature of MC):

(MC,)? = MC, and hence I — MC,, is also a projection
@ Basically, nullifying the unknown input by (I — MC))

This UIO design can be easily extended to reduced-order designs;
read [Hui & Zak, 2005] for more

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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Numerical Results for the UIO

@ Given a stable LTI MIMO system with 2 known, 2 unknown inputs, 4
outputs.
e Unknown inputs are all uz(t) = 0.5sin(t), SS matrices:

0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 (1> (2) 0 0 0 1 0
A=l o g B =B =0 Sl G= by
0 0 0

—1 —5 —10 —10 -5 0 0

o UIO state estimates converge to the actual states

4

2 3
Time (sec)

z 3 0 5
Time (sec)

2 3 0 5
Time (sec)
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Sliding Mode Observers — Introduction

Sliding model control: nonlinear control method whose structure depends
on the current state of the system

Sliding mode observers (SMO): nonlinear observers driving state
trajectories of estimation error to zero or to a bounded neighborhood

SMOs have high resilience to measurement noise

@ See [Utkin, 1992] for more on SMOs

©Ahmad F. Taha Module 07 Dynamic State Estimation for Dynamical Systems 19 / 36
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System and SMO Dynamics — Second UIO Architecture

e Plant Dynamics:
Tp = Apxp + Bz(,nul + B£2)u2
y = Cpzp

Assumption: unknown input uz is bounded, i.e., |uz]| < p
e SMO Dynamics [Hui & Zak, 2005]:

= Apip+ BVui + Ly —9) — BYE(g,y,n)
Lp pLp p Ul y—vy D Y,Y,n
g = CP‘%IH

@ w1 and y: readily available signals for the SMO
o E(-) is defined as (n is SMO gain):

FG-) g
By =TG-l "IV
0 if F(j—y)=0

SMO design objective: find matrices I’ and L

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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SMO Design

o F € R™*P satisfies: | FC), = (B;)Q))TP

@ L is chosen to guarantee the asymptotic stability of A, — LC,

@ Thus, for @ = Q" > 0, there is a unique P = P > 0 such that P

satisfies:
(Ayfu%fP+PU%quJ:wi‘P:PT>0

o FE(-) guarantees that e(t) is insensitive to the unknown input u2(t) and
the estimation error converges asymptotically to zero

*

If for the chosen @), no matrix F' satisfies the above equality, another
matrix () can be chosen

*

A design algorithm (to find matrices F, L, P) is presented in [Hui & Zak,
2005]

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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LMI Solution for the SMO Design

@ The SMO design problem boils down to solving matrix equalities
@ Can we solve the matrix design problem using LMIs? Yes!
@ We have two (nonlinear) matrix equations in terms of P, F, L:
(Ay — LC,) " P+ P(A, — LC,) = —Q
pP=P'
FC, = (BP)TP

LMI trick: set Y = PL, rewrite above system of linear matrix equations
as:

AJP+PA,—C) YT —YC,
P=P'
FC, = (BP)'P

Il
|
O

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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SMO ign Using CVX

Sample CVX code:

cvx_clear
cvx_begin sdp quiet

variable P(n, n) symmetric
variable Y(n, p)

variable F(m2, p)

minimize(0)

subject to

Ap’*P + P*Ap - Y*Cp - Cp’*Y’ <= 0
F*Cp-Bp2’*P==0;

P>=0

cvx_end

L = P\Y;

©Ahmad F. Taha Module 07 Dynamic State Estimation for Dynamical Systems
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Numerical Example

o Linearized dynamics of a power system:

—41 0 0 0 2 0 2 1 0
_|2767 —16.67 —55.33 0 o 333.33 o T _lo o
A= 0 0.01 —001 of B1=|o 0 B2=101.C =g o
0 0 1 0 0 0 0 0 1
@ Solving for P, L, F' using CVX, we obtain:
—28.22 —0.12 245 0 0 0.21
| 12223 —39.15 _ | o 019 036 0.36
L=1"7 502 | =489 042, P=| o a3 501
0.05 3.76 021 0.36 —15.01 43.62

o After simulating the observer, we obtain:

40 200 40 200
—Actual N —Actual —Actual —Actual
——Estimated ——Estimated 20 — Estimated o ——Estimated
20
0
- d 0 & 7 -200
o -20
-4
100 w0 00
-20 -200 -60 -600
0 5 10 15 20 0 10 20 0 5 10 15 20 0 5 0 15 20
Time Time Time Time

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems



Intro to DSE Observers for LTI Systems Estimators for Systems with Uls Observers for Nonlinear Systems DSE Techniques References
0000000 [e]e]e} 0000000000000 ®00000000 [e]e]

Dynamic Observers for NL Systems — Architecture # 1
@ Question: What if system dynamics are nonlinear?

@ Answer: Use deterministic estimators for nonlinear systems

System dynamics:

&= Az + Biuy + ¢(z,u) + Bous
————— NI ~

linear terms nonlinearities unknown inputs

Nonlinear term in the dynamics ¢(z,u) is:

— Globally Lipschitz (Lipschitz Continuous):
lo(z,u) — d(z,u)| < Ljlz— 2|, L=0
— One-sided Lipschitz:
(P(z,u) — Pp(z,u),z — 2) < kil — z||2
— Quadratically inner-bounded:
((a,u) — ¢(z,u) " ($(x,u) — ¢(z,u)) < kollz— =] + ks ($(w, u) — p(2, u),z—2)
* Lipschitz continuity = quadratic inner-boundedness

* Example: if ¢(x) = sin(z), then L =1

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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Finding Lipschitz Constants — Examples

o Example 1: if ¢(x) = x2, what is the Lipschitz constant L if « is defined
on the interval [—2,2]?

— Solution: applying the definition, we have:

p(x2) — p(w1)|| = |23 — aF| = |w2 — 1||w2 + 21| < 4|22 — 71| =

azx1 + bxa
1 — cos(czx1)

o Example 2: find L if ¢(z) = { ] z € R% and a,b,c € Ry

— Solution:
lo(z) — o)l = ’laf;;(‘;;z)}7[1@;(12)”)
- | [ i) | - | oot 205 e - e
< | [Gumenten ]| < | e |
S 13 N | 1 ) |
< V2 [‘c‘ SH I -l = [L=vamax(atbo
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Observer Design

References

@ Plant dynamics under unknown inputs:
= Az + Biui + ¢(z,u) + Baus
y = Cx
@ Observer dynamics [Zhang et al., 2012]:
& = A + Biui + ¢(2,u) + L(y — C)

@ Matrix-gain L determined as follows:
© Given k1, ko, k3, solve this LMI for €1,€e2,0 and P =P T > O:

k —
ATP 4 PA+ (e1ky + eska)l, —oCTC P4 22"

5 g
k)3€2 — €1 T < 0
Pt =1 —e2ln
© Compute observer gain L:
L= %P*lcT

o Extension: reduced-order DSE

@ Read [Zhang et al., 2012] to understand the derivation of the above LMI

©Ahmad F. Taha
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Simulation Example

@ Nonlinear power system, consider Lipschitz parameters: p =9 =pu =1
@ Using CVX, we solve for P, e1,€e2 and o:

61 = 0.0122, €2 = 0.0144, o = 6.424,
@ Then, the observer gain-matrix L is computed:

0.4894 —0.017 0.062 —0.46 —6.02 15.93 31.86 12.04
P= —0.01 0.005 0 0.006 L= ZP71C‘T _ |—15.74 42.50 85.02  31.503

0.062 0 0.77 0.02 |~ 2 4.20 0.06 0.12 —8.46

—0.46 0.006 0.02 0.49 —-3.11 8.69 17.39 6.23

@ Given L, plot the observer response given random estimator initial
conditions:

——Actual Value

- - = Observer Estimate|

0 5 10 15 20 0 5 10 15 20

Time (second) Time (second)

0 5 10 15 20 0 5 10 15 20

o (second
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ynamic Observer for NL Systems — Architecture # 2

@ Here, we introduce an observer design for a specific class of nonlinear
systems with unknown inputs

@ Observer design based on the methods presented in [Chen & Saif, 2006]

o Observer design assumes:
@ B> is full-column rank

@ Nonlinear function is Lipschitz

@ The design problem is formulated as an SDP

©Ahmad F. Taha Module 07 Dynamic State Estimation for Dynamical Systems
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Observer Design for NL Systems

System dynamics:

T = Ax+ Biui + ¢($C) + Bous
y = Czx

@ Proposed observer dynamics:

z = Nz+Gu+ Ly+ M¢o(z)

T = z—FRy

* Matrices E/, K, N,G, L and M are obtained from the matrix equalities
that ensure the asymptotic stability of estimation error

Lipschitz constant v: ||¢(z1) — ¢(x2)]| < v||lz1 — x2||

@ Authors in [Chen & Saif, 2006] develop matrix equations that guarantee
e = x — & converges to zero

o Can you re-derive the equations? Design matrix parameters s.t. e — 0

@ Read [Chen & Saif, 2006] to understand the design algorithm

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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Observer Design Algorithm for NL Systems

Algorithm 1 Observer with Unknown Input Design Algorithm

1: given parameters: A, By, B2, C and v (the Lipschitz constant)
2: compute matrices U,V, A and Bi:

U = —B2(CBy)' V =1 —(CB2)(CB2)f
A=(I+UC)A B =VCA
3: find matrices Y, K and a symmetric positive definite matrix P that are a solution
for this LMI: - .
11 12
0
[‘I'Iz I2n] <

where

U = AP+ PA+L B VYTVB —CTRT — RC + 41,
Wiy =75 (P(I+UC)+Y(VC))
4: obtain matrices Y and K and the observer parameters N, G, L and M:

Yy = Pv,K=P 'K
E = U+YV,M = I+EC
N = MA-KC, G = MB;
L = K({I+CE)—MAE

5. simulate the UlO given the computed matrices

©Ahmad F. Taha Module 07 — Dynamic State Estimation for Dynamical Systems
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SMO Design Using CVX

[p n] = size(C); [n m1] = size(B1); [n m2] = size(B2);
U = -B2*pinv(C*B2); V = eye(length(C*B2))-(C*B2)*pinv(C*B2);

cvx_begin sdp quiet
variable P(n,n) symmetric
variable Ybar(m,p)
variable Kbar(n,p)

minimize (1)

subject to

P >= 0;

-[((eye(n)+U*C)*A) **P + Px((eye(n)+U*C)*A) + ...
(VkCxA) >*Ybar’ + Ybarx(VxC*A) - C’*Kbar’ - Kbar*C + ...

gammaxeye (Length (Kbar*C)) , sqrt(gamma)*(P*(eye(n)+U*C)+Ybarx (VC)) ;
(sqrt (gamma) * (P* (eye (n) +UxC) +Ybar* (V*C)) )’ , -eye(n)] >= 0;

cvx_end

Y = inv(P)*Ybar; K = inv(P)*Kbar;
E = U+Y*V; M = eye(n)+E*C;

N = M*A-K+C; G = M*B1;

=
[

K* (eye (p) +C*E) -M*A*E;
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Consider this dynamical system:
-1 0 -1 1 T 0.5 sin(z2)
0 0|,Bi=0,Ba=|0|,C=0 0| ,¢=|06cos(s)]|,us=2sin(5t)
-1 -1 0 0o 1 0
Applying the algorithm, we obtain:
-1 0 0 o 50.25 0 0 0 0
U=1|o0 0 7VZ{0 1},P: 0 0.89 0 Y = |0 1.3874
0 0 0 0 50.25 0 —50.25
Compute matrices K, E, M, N, G, L and simulate the observer
Converging estimates:
100
50 ,
10
0 Ry
\[\‘w“\w«wmmwwmmmw 15
50 -20
-25
-100 -
020 3 40 50"g 10 20 3 40 0% 10 20 30 40 50
Time Time Time
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Comparison between DSE Techniques

Kalman Filter Derivatives

Functionality /Characteristic EKE UKE CKE Observer

System’s Nonlinearities X v
Feasibility — —
Tolerance to Different Initial Conditions X X
Tolerance to Unknown Inputs X X
Tolerance to Cyber-Attacks X X
Tolerance to Process & Measurement Noise v v
Guaranteed Convergence — —
Numerical Stability — — —
Computational Complexity O(n?)
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3
3
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S
3
N4
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ®
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