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A. M. Lyapunov’s (1857--1918) Thesis 
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Lyapunov’s Thesis 
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Lyapunov’s Thesis Translated 
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Some Details About Translation 
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Outline 

Notation using simple examples of 
dynamical system models 

Objective of analysis of a nonlinear 
system 

Equilibrium points 

 Lyapunov functions 

Stability 

Barbalat’s lemma    
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A Spring-Mass Mechanical System 

 

 

 

 

 

 

 

 x---displacement of the mass from 
   the rest position 
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Modeling the Mass-Spring System 

 Assume a linear mass, where k is the 
linear spring constant 

 Apply Newton’s law to obtain 

    

 Define state variables: x1=x and x2=dx/dt 

 The model in state-space format:  
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Analysis of the Spring-Mass System 

Model 

 The spring-mass system model is linear 
time-invariant (LTI) 

 Representing the LTI system in standard 
state-space format 
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Modeling of the Simple Pendulum 

 The simple pendulum 
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The Simple Pendulum Model 

 Apply Newton’s second law 

 

 

 where J is the moment of inertia, 

 

 

 Combining gives 

   

 sinmglJ 

2mlJ 

 sin
l

g

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State-Space Model of the Simple 

Pendulum 

 Represent the second-order differential 
equation as an equivalent system of two 
first-order differential equations 

 First define state variables, 

 x1=θ and x2=dθ/dt 

 Use the above to obtain state–space 
model (nonlinear, time invariant)  
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Objectives of Analysis of Nonlinear Systems 

 Similar to the objectives pursued when 
investigating complex linear systems 

 Not interested in detailed solutions, rather 
one seeks to characterize the system 
behavior---equilibrium points and their 
stability properties 

A device needed for nonlinear system 
analysis summarizing the system 
behavior, suppressing detail 

 
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Summarizing Function (D.G. 

Luenberger, 1979) 

A function of the system state 
vector 

As the system evolves in time, 
the summarizing function takes 
on various values conveying 
some information about the 
system 
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Summarizing Function as a First-Order 

Differential Equation 

 

The behavior of the summarizing 
function describes a first-order 
differential equation 

Analysis of this first-order 
differential equation in some 
sense a summary analysis of the 
underlying system 
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Dynamical System Models 

 Linear time-invariant (LTI) system model 

 

 Nonlinear system model 

  

 

 

 

 

 Shorthand notation of the above model 
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More Notation 

 System model 

 

 

 Solution 

 

 

 Example: LTI model,  

  

 Solution of the LTI modeling equation 

       00 xtx,tx,tftx 

   00 x,t;txtx 

  00 xx,Axx 

  0xetx At
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Equilibrium Point 

 A vector         is an equilibrium point for a 
dynamical system model 

 

 

 

 if once the state vector equals to        it remains 
equal to         for all future time. The equilibrium 
point satisfies   

ex

    tx,tftx 

ex

ex

   0, txtf
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Formal Definition of Equilibrium 

A point xe is called an equilibrium 
point of dx/dt=f(t,x), or simply 
an equilibrium, at time t0 if for 
all t ≥ t0, 

     f(t, xe)=0 

Note that if xe is an equilibrium 
of our system at t0, then it is 
also an equilibrium for all τ ≥ t0 
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Equilibrium Points for LTI Systems 

  

 For the time invariant system 

     dx/dt=f(x) 

 a point is an equilibrium at some 
time τ if and only if it is an 
equilibrium at all times 
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Equilibrium State for LTI Systems 

 LTI model 

 

 

 Any equilibrium state       must satisfy 

 

 

 

 If         exist, then we have unique equilibrium 
state  

  Axx,tfx 

0eAx

ex

1A

0ex
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Equilibrium States of Nonlinear 

Systems 

 

A nonlinear system may have a 
number of equilibrium states 

 

The origin, x=0, may or may not 
be an equilibrium state of a 
nonlinear system 
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Translating the Equilibrium of 

Interest to the Origin 

 

If the origin is not the 
equilibrium state, it is always 
possible to translate the origin of 
the coordinate system to that 
state 

So, no loss of generality is lost in 
assuming that the origin is the 
equilibrium state of interest 
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Example of a Nonlinear System with 

Multiple Equilibrium Points 

 Nonlinear system model 

 

 

 

 

 Two isolated equilibrium states 
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Isolated Equilibrium 

  

 An equilibrium point xe in Rn is 
an isolated equilibrium point if 
there is an r>0 such that the r-
neighborhood of xe contains no 
equilibrium points other than xe 
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Neighborhood of xe 

 The r-neighborhood of xe can be 
a set of points of the form 

  

  

  

 where ||.|| can be any p-norm 
on Rn  
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Remarks on Stability 

Stability properties characterize 
the system behavior if its initial 
state is close but not at the 
equilibrium point of interest 

When an initial state is close to 
the equilibrium pt., the state 
may remain close, or it may 
move away from the equilibrium 
point 
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An Informal Definition of  Stability 

  

 An equilibrium state is stable if 
whenever the initial state is near 
that point, the state remains 
near it, perhaps even tending 
toward the equilibrium point as 
time increases 
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Stability Intuitive Interpretation 
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Formal Definition of Stability 

 An equilibrium state       is stable, in the sense 

of Lyapunov, if for any given      and any positive 

scalar         there exist a positive scalar 

                            

 such that if 

                                                                 

 then 

                                             

 for all  

eqx

0t


  ,0t

   exxttx 00,;

   extx 0

0tt 
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Stability Concept in 1D 
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Stability Concepts in 2D 
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Further Discussion of Lyapunov 

Stability 

 

 Think of a contest between you, 
the control system designer, and 
an adversary (nature?)---B. 
Friedland (ACSD, p. 43, Prentice-
Hall, 1996) 
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Lyapunov Stability Game 

The adversary picks a region in 
the state space of radius ε 

You are challenged to find a 
region of radius δ such that if the 
initial state starts out inside your 
region, it remains in his region---
if you can do this, your system is 
stable, in the sense of Lyapunov 
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Lyapunov Stability---Is It Any 

Good? 

Lyapunov stability is weak---it 
does not even imply that  x(t) 
converges to xe  as t approaches 
infinity  

The states are only required to 
hover around the equilibrium 
state 

The stability condition bounds the 
amount of wiggling room for x(t) 
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Asymptotic Stability i.s.L 

 The property of an equilibrium 
state of a  differential equation 
that satisfies two conditions: 

(stability) small perturbations 
in the initial condition 
produce small perturbations 
in the solution;  
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Second Condition for Asymptotic 

Stability of an Equilibrium 

  

(attractivity of the equilibrium 
point) there is a domain of 
attraction such that whenever 
the initial condition belongs to 
this domain the solution 
approaches the equilibrium state 
at large times  
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Asymptotic Stability in the sense of 

Lyapunov (i.s.L.) 

The equilibrium state is 
asymptotically stable if 

it is stable, and 

 

convergent, that is, 

 
    tasxx,t;tx e00
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Convergence Alone Does Not 

Guarantee Asymptotic Stability 

 Note: it is not sufficient that just 

 

  

  

 

 

 for asymptotic stability. We need 
stability too! Why? 

   tasxx,t;tx e00



40 

How Long to the Equilibrium? 

Asymptotic stability does not 
imply anything about how long it 
takes to converge to a 
prescribed neighborhood of xe 

Exponential stability provides a 
way to express the rate of 
convergence  
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Asymptotic Stability of Linear 

Systems 

An LTI system is asymptotically 
stable, meaning, the equilibrium 
state at the origin is asymptotically 
stable, if and only if the eigenvalues 
of A  have negative real parts 

 For LTI systems asymptotic stability 
is equivalent with convergence 
(stability condition automatically 
satisfied) 
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Asymptotic Stability of Nonlinear 

Systems 

For LTI systems asymptotic 
stability is equivalent with 
convergence (stability condition 
automatically satisfied) 

For nonlinear systems the state 
may initially tend away from the 
equilibrium state of interest but 
subsequently may return to it 
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Asymptotic Stability in 1D 
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Convergence Does Not Mean 

Asymptotic Stability (W. Hahn, 1967) 

 Hahn’s 1967 Example---A 
system whose all solutions are 
approaching the equilibrium, 
xe=0, without this equilibrium 
being asymptotically stable 
(Antsaklis and Michel, Linear 
Systems, 1997, p. 451)  
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Convergence Does Not Mean 

Asymptotic Stability (W. Hahn, 1967) 

  Nonlinear system of Hahn where the origin 
is attractive but not a.s.  
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Phase Portrait of Hahn’s 1967 Example 
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Instability in 1D 
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Lyapunov Functions---Basic Idea 

Seek an aggregate summarizing 
function that continually 
decreases toward a minimum 

For mechanical systems---
energy of a free mechanical 
system with friction always 
decreases unless the system is 
at rest, equilibrium 
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Lyapunov Function Definition 

 

 A function that allows one to 
deduce stability is termed a 
Lyapunov function 



50 

Lyapunov Function Properties 

for Continuous Time Systems 

 

Continuous-time system 

 

 

 

Equilibrium state of interest 

 

    txftx 

ex
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Three Properties of a Lyapunov 

Function 

 We seek an aggregate summarizing 
function V 

V is continuous 

V has a unique minimum with 
respect to all other points in some 
neighborhood of the equilibrium of 
interest 

Along any trajectory of the 
system, the value of V never 
increases 
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Lyapunov Theorem for Continuous 

Systems 

Continuous-time system 

 

 

 

Equilibrium state of interest 

    txftx 

0ex
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Lyapunov Theorem---Negative Rate 

of Increase of  V 

If x(t) is a trajectory, then 
V(x(t)) represents the 
corresponding values of V along 
the trajectory 

In order for V(x(t)) not to 
increase, we require 

   0txV
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The Lyapunov Derivative 

 Use the chain rule to compute the 
derivative of V(x(t)) 

 

 

 Use the plant model to obtain 

 

 

 Recall  
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Lyapunov Theorem for LTI Systems 

  

 The system dx/dt=Ax is 
asymptotically stable, that is, the 
equilibrium state xe=0 is 
asymptotically stable (a.s), if 
and only if any solution 
converges to xe=0 as t tends to 
infinity for any initial x0 
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Lyapunov Theorem Interpretation 

 

View the vector x(t) as defining 
the coordinates of a point in an 
n-dimensional state space 

 

In an a.s. system the point x(t) 
converges to xe=0 
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Lyapunov Theorem for n=2 

  

 If a trajectory is converging to 
xe=0, it should be possible to 
find a nested set of closed curves 
V(x1,x2)=c, c≥0, such that 
decreasing values of c yield level 
curves shrinking in on the 
equilibrium state xe=0 
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Lyapunov Theorem and Level 

Curves 

 

The limiting level curve 
V(x1,x2)=V(0)=0 is 0 at the 
equilibrium state xe=0 

The trajectory moves through 
the level curves by cutting them 
in the inward direction ultimately 
ending at xe=0 
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The trajectory is moving in the 

direction of decreasing V 
Note that   
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Level Sets 

The level curves can be thought 
of as contours of a cup-shaped 
surface 

 

For an a.s. system, that is, for 
an a.s. equilibrium state xe=0, 
each trajectory falls to the 
bottom of the cup 
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Positive Definite Function---General 

Definition 

  

 The function V is positive definite 
in S, with respect to xe, if V has 
continuous partials, V(xe)=0, and 
V(x)>0 for all x in S, where x≠xe 
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Positive Definite Function With 

Respect to the Origin 

  

 Assume, for simplicity, xe=0, then 
the function V is positive definite 
in S if V has continuous partials, 
V(0)=0, and V(x)>0 for all x in S, 
where x≠0 
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Example: Positive Definite Function 

 Positive definite function of two 
variables 



64 

Positive Semi-Definite Function---

General Definition 

  

 The function V is positive semi-
definite in S, with respect to xe, 
if V has continuous partials, 
V(xe)=0, and V(x)≥0 for all x in 
S 
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Positive Semi-Definite Function With 

Respect to the Origin 

 

 Assume, for simplicity, xe=0, 
then the function V is positive 
semi-definite in S if V has 
continuous partials, V(0)=0, 
and V(x)≥0 for all x in S 
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Example: Positive Semi-Definite 

Function 

 An example of positive semi-definite 
function of two variables 
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Quadratic Forms 

V=xTPx, where P=PT 

If P not symmetric, need to 
symmetrize it 

First observe that because the 
transposition of a scalar equals 
itself, we have 
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Symmetrizing Quadratic Form 

Perform manipulations 

  

 

 

 

Note that 
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Tests for Positive and Positive Semi-

Definiteness of Quadratic Form 

V=xTPx, where P=PT, is positive 
definite if and only if all 
eigenvalues of P are positive 

V=xTPx, where P=PT, is positive 
semi-definite if and only if all 
eigenvalues of P are non-
negative 
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Comments on the Eigenvalue Tests 

 

These tests are only good for the 
case when P=PT. You must 
symmetrize P before applying 
the above tests 

Other tests, the Sylvester’s 
criteria, involve checking the 
signs of principal minors of P 
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Negative Definite Quadratic Form 

  

 V=xTPx is negative definite if 
and only if 

-xTPx=xT(-P)x 

  is positive definite 
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Negative Semi-Definite Quadratic 

Form 

 

 V=xTPx is negative semi-definite 
if and only if 

-xTPx=xT(-P)x 

 is positive semi-definite 
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Example: Checking the Sign 

Definiteness of a Quadratic Form 

 Is P, equivalently, is the associated 

quadratic form, V=xTPx, pd, psd, 

nd, nsd, or neither? 

 

 

 

  The associated quadratic form 
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Example: Symmetrizing the Underlying 

Matrix of the Quadratic Form 

Applying the eigenvalue test to 
the given quadratic form would 
seem to indicate that the 
quadratic form is pd, which turns 
out to be false 

Need to symmetrize the 
underlying matrix first and then 
can apply the eigenvalue test  
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Example: Symetrized Matrix 

Symmetrizing manipulations 

 

 

 

 

The eigenvalues of the symmetrized 
matrix are: 5 and -1 

The quadratic form is indefinite! 
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Example: Further Analysis 
Direct check that the quadratic form 

is indefinite 

Take x=[1  0]T. Then 

  

 

Take x=[1  1]T. Then 
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Stability Test for xe=0 of dx/dt=Ax 
Let V=xTPx where P=PT>0 

For V to be a Lyapunov function, 
that is, for xe=0 to be a.s., 

  

  

Evaluate the time derivative of V 
on the solution of the system 
dx/dt=Ax---Lyapunov derivative 
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Lyapunov Derivative for dx/dt=Ax 

Note that V(x(t))=x(t)TPx(t) 

Use the chain rule 

 

 

 

 

We used 
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Lyapunov Matrix Equation 
Denote 

 

Then the Lyapunov derivative 
can be represented as 

  

 

 where  
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Terms to Our Vocabulary 

Theorem---a major result of 
independent interest 

 Lemma---an auxiliary result that is 
used as a stepping stone toward a 
theorem 

Corollary---a direct consequence of a 
theorem, or even a lemma 
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Lyapunov Theorem 

 The real matrix A is a.s., that is, 
all eigenvalues of A have 
negative real parts if and only if 
for any             the solution      
of the continuous matrix 
Lyapunov equation 

 

 

 is (symmetric) positive definite 
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How Do We Use the Lyapunov 

Theorem? 

Select an arbitrary symmetric 
positive definite Q , for example, 
an identity matrix, In  

Solve the Lyapunov equation for 
P=PT  

If P is positive definite, the 
matrix A is a.s. If P is not p.d. 
then A is not a.s. 
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How NOT to Use the Lyapunov 

Theorem 

 

It would be no use choosing P to 
be positive definite and then 
calculating Q  

For unless Q turns out to be 
positive definite, nothing can be 
said about a.s. of A from the 
Lyapunov equation 
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Example: How NOT to Use the 

Lyapunov Theorem 

Consider an a.s. matrix 

 

 

Try 

 

 

Compute 
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Example: Computing Q 

  

 

 

 

 

 

 The matrix Q is indefinite!---
recall the previous example  
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Solving the Continuous Matrix 

Lyapunov Equation Using MATLAB 

Use the MATLAB’s command lyap 

Example: 

 

Q=I2 

P=lyap(A,Q) 

 

 

Eigenvalues of P are positive: 0.2729 
and 2.9771; P is positive definite 
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Limitations of the Lyapunov 

Method 

Usually, it is challenging to analyze 
the asymptotic stability of time-
varying systems because it is very 
difficult to find Lyapunov functions 
with negative definite derivatives 

When can one conclude asymptotic 
stability when the Lyapunov 
derivative is only negative semi-
definite? 
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Some Properties of Time-Varying 

Functions 

                

                does not imply that f(t)  

 has a limit as  

  

  f(t) has a limit as               does not  

  

 imply that  
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More Properties of Time-Varying 

Functions 

 If f(t) is lower bounded and  

 decreasing (             ), then it  

 converges to a limit. (A well-known 
result from calculus.) 

 

But we do not know whether    

 or not as 
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Preparation for Barbalat’s Lemma 

Under what conditions 

 

 

We already know that the existence  

 of the limit of f(t) as  

 is not enough for 
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Continuous Function 
 

A function f(t) is continuous if small 
changes in t result in small changes 
in f(t) 

 Intuitively, a continuous function is a 
function whose graph can be drawn 
without lifting the pencil from the 
paper  
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Continuity on an Interval 

Continuity is a local property of a 
function—that is, a function f is 
continuous, or not, at a particular 
point 

A function being continuous on an 
interval means only that it is 
continuous at each point of the 
interval   
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Uniform Continuity 

A function f(t) is uniformly 
continuous if it is continuous and, in 
addition, the size of the changes in 
f(t) depends only on the size of the 
changes in t but not on t itself 

The slope of an uniformly continuous 
function slope is bounded, that is, 

     is bounded  

Uniform continuity is a global 
property of a function 
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Properties of Uniformly Continuous 

Function 

Every uniformly continuous function 
is continuous, but the converse is not 
true 

A function is uniformly continuous, or 
not, on an entire interval 

A function may be continuous at 
each point of an interval without 
being uniformly continuous on the 
entire interval  
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Examples 

Uniformly continuous: 

  f(t) = sin(t)  

 Note that the slope of the above 
function is bounded 

Continuous, but not uniformly 
continuous on positive real numbers:  

 f(t) = 1/t 

 Note that as t approaches 0, the 
changes in f(t) grow beyond any 
bound   
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State of an a.s. System With 

Bounded Input is Bounded 

Example of Slotine and Li, ―Applied 
Nonlinear Control,‖ p. 124, Prentice 
Hall, 1991 

Consider an a.s. stable LTI system 
with bounded input 

  

 

The state x is bounded because u is 
bounded and A is a.s. 



97 

Output of a.s. System With Bounded 

Input is Uniformly Continuous 

Because x is bounded and u is 
bounded,     is bounded 

Derivative of the output equation is 

  

  

The time derivative of the output is 
bounded 

Hence, y is uniformly continuous 
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Barbalat’s Lemma 

  

 If f(t) has a finite limit as  

 

 and if         is uniformly continuous 

 

 (or      is bounded), then    

 

 as  
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Lyapunov-Like Lemma 

 Given  a real-valued function W(t,x) 
such that 

W(t,x) is bounded below 

W(t,x) is negative semi-definite 

               is uniformly continuous in  

 t (or      bounded) then 
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Lyapunov-Like Lemma---Example; 

see p. 211 of the Text 

 Interested in the stability of the 
origin of the system 

  

 

 where u is bounded 

Consider the Lyapunov function 
candidate 
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Stability Analysis of the System in 

the Example 

The Lyapunov derivative of V is 

 

 

 

 

The origin is stable; cannot say 
anything about asymptotic stability 

Stability implies that x1 and x2 are 
bounded 
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Example: Using the Lyapunov-Like 

Lemma 

We now show that 

 

 

Note that V=x1
2+x2

2 is bounded from 
below and non-increasing as 

Thus V has a limit as 

Need to show that     is uniformly 
continuous 
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Example: Uniform Continuity of  

Compute the derivative of      and 
check if it is bounded 

 

  

The function      is uniformly  

 continuous because       is bounded  

Hence  

Therefore 
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Benefits of the Lyapunov Theory 

Solution to differential equation are 
not needed to infer about stability 
properties of equilibrium state of 
interest 

Barbalat’s lemma complements the 

Lyapunov Theorem 

Lyapunov functions are useful in 
designing robust and adaptive 
controllers 

 


