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Lyapunov’s Thesis Translated

INT. J. CONTI.OL, 1992, voL. 53, NO. 3, 531=-773

The general problem of the stability of motion

A. M. LYAPUNOV

Translated from Russian into French by Edouard Davaux, Marine Engineer at

Toulon.t :
Translated from French into English by A. T. Fuller.1

Preface -
In this work some methods are expounded for the resolution of guestioms

concerning the properties of motion and, in particular, of eguiiibrium, which are

known by the terms stability and instability.
The ordinary questions of this kind, those to which this work is devoied, lead

to the study of differential equations of the form -

dlx, dx, dx
oy, /2o LI T
dr e Xz, Y e X,



Some Details About Translation

I Mr Lyapunov has very graciously authorized the publication in French of his memotr
Obshchaya zadacha ob ustoichivosti dvizheniya printed in 1892 by the Mathematical Society
of Kharkov, The [French] translation has been revicwsd and corrested by the author
[Lyapunov], who has added a note based on an artick which appeared m 1893 in
Communications de la Société mathématique de Kharkow.

{ [Comments in square brackets are by A.T.F.]

§ We have in mind the cases where there applies the known theorem of Lagrange on the
maxima of the force-function [this is minus the potential energy function], relating to the
stability of equilibrium; also, the cases where there applies a more general theo:em of Routh
on the maxima and minima of the integrals of the equations of motion, allowing the
fesolution of certain questions relative to the stability of motion (see The advanced part of
A Treatise on the Dynamics of a System of Rigid Bodies, fourth edition, 1884, pp. 52, 53).




Outline

o Notation using simple examples of
dynamical system models

0 Objective of analysis of a nonlinear
system

o Equilibrium points
oLyapunov functions
o Stability

o Barbalat's lemma




A Spring-Mass Mechanical System

x---displacement of the mass from
the rest position




Modeling the Mass-Spring System

o Assume a linear mass, where k is the
linear spring constant

o Apply Newton’s law to obtain

Mx + kx = 0O
0 Define state variables: x;=X and x,=dx/dt
0 The model in state-space format:

Ty | _ | 2 _ | filzy,22)
o | | —gpe1 || fo(wr, o)




Analysis of the Spring-Mass System
Model

O The spring-mass system model is linear
time-invariant (LTI)

o Representing the LTI system in standard
state-space format

. T
0= |
L2




Modeling of the Simple Pendulum

The simple pendulum

mgcosf/ 0 mg sing

mg




The Simple Pendulum Model

o Apply Newton’s second law

JO =—-mglsin @
where J is the moment of inertia,
J=ml°

o Combining gives

9:—%§n9
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State-Space Model of the Simple

Pendulum

O Represent the second-order differential
equation as an equivalent system of two
first-order differential equations

o First define state variables,
X;=0 and x,=d0/dt

O Use the above to obtain state-space
model (nonlinear, time invariant)

| _ | AGer,22)
- fo(z,22)

X1 o
o o —% Sin x4
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Obijectives of Analysis of Nonlinear Systems

o Similar to the objectives pursued when
investigating complex linear systems

o0 Not interested in detailed solutions, rather
one seeks to characterize the system
behavior---equilibrium points and their
stability properties

- |Adevice needed for nonlinear system
analysis summarizing the system

behavior, suppressing detail
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Summarizing Function (D.G.
Luenberger, 1979)

OA function of the system state
vector

O0As the system evolves in time,
the summarizing function takes
on various values conveying
some information about the
system




Summarizing Function as a First-Order
Ditterential Equation

oThe behavior of the summarizing
function describes a first-order
differential equation

oAnalysis of this first-order
differential equation in some
sense a summary analysis of the
underlying system




Dynamical System Models

O Linear time-invariant (LTI) system model

X=Ax, AeR™

o Nonlinear system model
% | [ f(t,x,....x )]
%, | | f,(t,%,...,x )

X fo (6 X0 X, )

O Shorthand notation of the above model

x=f(t,x), xeR"
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More Notation

o System model

X(t)=Ft.x(t). x(t)=x,

X(t): X(t;to’xo)

o Example: LTI model,
x=Ax, x(0)=x,

o Solution of the LTI modeling equation

x(t)=e™x,

O Solution



Equilibrium Point

A vector X, is an equilibrium point for a
dynamical system model

x(t)=f(t,x(t))

if once the state vector equals to X, it remains
equal to X, for all future time. The equilibrium

point satisfies
f(t,x(t))=0
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Formal Detinition ot Equilibrium

OA point x, is called an equilibrium
point of dx/dt=f(t,x), or simply
an equilibrium, at time ¢, if for
all t =2 ¢,

f(t, x,)=0
oNote that if x_ is an equilibrium

of our system at ¢,, then it is
also an equilibrium for all T = £,




Equilibrium Points for L'TT Systems

For the time invariant system
dx/dt=Ff(x)

a point is an equilibrium at some
time 1 if and only if it is an
equilibrium at all times




Equilibrium State for L'TT Systems

o LTI model
x = f(t,x)=Ax
o Any equilibrium state X, must satisfy
Ax, =0

-1
oIf A exist, then we have unique equilibrium

state
X =0

€
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Equilibrium States of Nonlinear
Systems

O0A nonlinear system may have a
number of equilibrium states

oThe origin, x=0, may or may not
be an equilibrium state of a
nonlinear system




Translating the Equilibrium of
Interest to the Origin

oIf the origin is not the
equilibrium state, it is always
possible to translate the origin of
the coordinate system to that
state

0So, no loss of generality is lost in
assuming that the origin is the
equilibrium state of interest




Example of a Nonlinear System with
Multiple Equilibrium Points

o Nonlinear system model

X1 X9

X5 X1—X2—X12_

o Two isolated equilibrium states

0
: X
0




Isolated Equilibrium

An equilibrium point x_in R" is
an isolated equilibrium point if
there is an r>0 such that the r-
neighborhood of x_, contains no
equilibrium points other than x_




Neighborhood of x

The r-neighborhood of x_ can be
a set of points of the form

Br(xe) ={x : || — || < 7}

where |]|.||] can be any p-norm
on R"




Remarks on Stability

oStability properties characterize
the system behavior if its initial
state is close but not at the
equilibrium point of interest

oWhen an initial state is close to
the equilibrium pt., the state
may remain close, or it may
move away from the equilibrium
point




An Informal Definition of Stability

An equilibrium state is stable if
whenever the initial state is near
that point, the state remains
near it, perhaps even tending
toward the equilibrium point as
time increases




Stability Intuitive Interpretation

\o/ :

(1) (2)

(3) 4)
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Formal Detinition of Stability

An equilibrium state X, is stable, in the sense
of Lyapunov, if for any given t, and any positive
scalar & there exist a positive scalar

o =olt,,
such that if (O g)
Ix(t,)—x.[ <o
then
Ix(t;ty, %, )— x| < &
forall t>t,
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Stability Concept in 1D

(1)




Stability Concepts in 2D

N f Ve
&J/}/}U) : %J/Jfo) 1
(a) (b)




Further Discussion ot Lyapunov

Stability

Think of a contest between you,
the control system designer, and
an adversary (nature?)---B.

Friedland (ACSD, p. 43, Prentice-
Hall, 1996)




Lyapunov Stability Game

oThe adversary picks a region in
the state space of radius €

oYou are challenged to find a
region of radius 0 such that if the
initial state starts out inside your
region, it remains in his region---
if you can do this, your system is
stable, in the sense of Lyapunov




Lyapunov Stability---Is It Any
Good?

oLyapunov stability is weak---it
does not even imply that x(t)
converges to x_, as t approaches
infinity

o The states are only required to
hover around the equilibrium
state

o The stability condition bounds the
amount of wiggling room for x(t)%




Asymptotic Stability 1.s.1.

The property of an equilibrium
state of a differential equation
that satisfies two conditions:

o(stability) small perturbations
in the initial condition
produce small perturbations
in the solution;




Second Condition for Asymptotic
Stability of an Equilibrium

o (attractivity of the equilibrium
point) there is a domain of
attraction such that whenever
the initial condition belongs to
this domain the solution
approaches the equilibrium state
at large times




Asymptotic Stability in the sense of
Lyapunov (1.s.L..)

oThe equilibrium state is
asymptotically stable if

mit is stable, and

mconvergent, that is,

X(t;t,,X,) = X, ast — o




Convergence Alone Does Not
Guarantee Asymptotic Stability

Note: it is not sufficient that just
X(t;t,,X,) = X, ast — oo

for asymptotic stability. We need
stability too! Why?
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How Long to the Equilibrium?

oAsymptotic stability does not
imply anything about how long it
takes to converge to a
prescribed neighborhood of x_

oExponential stability provides a
way to express the rate of
convergence




Asymptotic Stability of Linear
Systems

o An LTI system is asymptotically
stable, meaning, the equilibrium
state at the origin is asymptotically
stable, if and only if the eigenvalues
of A have negative real parts

o For LTI systems asymptotic stability
is equivalent with convergence
(stability condition automatically
satisfied)

41




Asymptotic Stability of Nonlinear
Systems

oFor LTI systems asymptotic
stability is equivalent with
convergence (stability condition
automatically satisfied)

oFor nonlinear systems the state
may initially tend away from the
equilibrium state of interest but
subsequently may return to it




Asymptotic Stability in 1D

(1)

&

= | D
i

o

!

(b)




Convergence Does Not Mean

Asymptotic Stability (W. Hahn, 1967)

Hahn’'s 1967 Example---A
system whose all solutions are
approaching the equilibrium,
x.=0, without this equilibrium
being asymptotically stable
(Antsaklis and Michel, Linear
Systems, 1997, p. 451)




Convergence Does Not Mean

Asymptotic Stability (W. Hahn, 1967)

Nonlinear system of Hahn where the origin
is attractive but not a.s.

x%(mz—xl)—l—:f:g

(23+23) (14 (23+23)?)

33%(:172—2331)

| (#3+03) (14 (3+43)°)
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Phase Portrait ot Hahn’s 1967 Example

1

0.8

0.6

0.4

0.2

46



Instability in 1D

(c)

{

x(1)
i

8* -
LN

gl Oy L
Y




Lyapunov Functions---Basic Idea

0Seek an aggregate summarizing
function that continually
decreases toward a minimum

oFor mechanical systems---
energy of a free mechanical
system with friction always
decreases unless the system is
at rest, equilibrium




Lyapunov Function Detinition

A function that allows one to
deduce stability is termed a
Lyapunov function




Lyapunov Function Properties
for Continuous Time Systems

oContinuous-time system

X(t)= £ (x(t))

oEquilibrium state of interest
X

€




Three Properties ot a Lyapunov
Function

We seek an aggregate summarizing
function V

mV Is continuous

m / has a unique minimum with
respect to all other points in some
neighborhood of the equilibrium of
Interest

m Along any trajectory of the
system, the value of V never
Increases

51




Lyapunov Theorem for Continuous
Systems

OoContinuous-time system

X(t)= £ (x(t))

oEquilibrium state of interest

X =0

€




Lyapunov Theorem---Negative Rate
of Increase of |/

oIf x(t) is a trajectory, then
V(x(t)) represents the
corresponding values of V along
the trajectory

oIn order for V(x(t)) not to
INnCrease, we require

V(x(t) <0




The Lyapunov Derivative

0 Use the chain rule to compute the
derivative of V(x(t))

V(x(t))=VV(x) x

0 Use the plant model to obtain

V(x(t) = vV (x) f(x)

O Recall

wWio| Y M v |
OX, OX, OX,




Lyapunov Theorem for I'TT Systems

The system dx/dt=Ax is
asymptotically stable, that is, the
equilibrium state x_,=0 is
asymptotically stable (a.s), if
and only if any solution
converges to x,=0 as t tends to
infinity for any initial x;




Lyapunov Theorem Interpretation

oView the vector x(t) as defining
the coordinates of a point in an
n-dimensional state space

oln an a.s. system the point x(t)
converges to x.=0




Lyapunov Theorem ftor #=2

If a trajectory is converging to
x.=0, it should be possible to
find a nested set of closed curves
V(x,X,)=c, c=0, such that
decreasing values of c yield level
curves shrinking in on the
equilibrium state x_.=0




Lyapunov Theorem and Level
Curves

oThe limiting level curve
V(x{,X,)=V(0)=0 is O at the
equilibrium state x_.=0

oThe trajectory moves through
the level curves by cutting them
in the inward direction ultimately
ending at x_.=0




The trajectory 1s moving in the
direction of decreasing

Note that |
Ot v V|l12) cos o < O
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Level Sets

oThe level curves can be thought
of as contours of a cup-shaped
surface

oFor an a.s. system, that is, for
an a.s. equilibrium state x_=0,
each trajectory falls to the
bottom of the cup




Positive Definite Function---General
Definition

The function V is positive definite
in S, with respect to x_, if V has

continuous partials, V(x,.)=0, and
V(x)>0 for all x in S, where x+Xx_




Positive Detinite Function With
Respect to the Origin

Assume, for simplicity, x,=0, then
the function V is positive definite
in S if V has continuous partials,
V(0)=0, and V(x)>0 for all x in S,
where x+0




Example: Positive Detinite Function

Positive definite function of two

variables

V(x1,20) = 2:1’;% 3.1’;%
o 2 0 -:l’:l -
— [Il @} 0 3 ||
= x!l Pxr

> 0 forall x#0
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Positive Semi-Definite Function---
General Definition

The function V is positive semi-
definite in S, with respect to x_,
if V has continuous partials,
V(x,.)=0, and V(x)=0 for all x in
S




Positive Semi-Definite Function With
Respect to the Origin

Assume, for simplicity, x_,=0,
then the function V is positive
semi-definite in S if V has
continuous partials, V(0)=0,
and V(x)=0 forall xin S




Example: Positive Semi-Detinite
Function

An example of positive semi-definite
function of two variables

V(xy,x0) re

|
C)E.g —
N8
s v
= &
N
o
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Quadratic Forms

oV=x"Px, where P=P"

oIf P not symmetric, need to
symmetrize it

oFirst observe that because the
transposition of a scalar equals
itself, we have

(wTPw)T — ' Pl = 2! Px




Symmetrizing Quadratic Form

o Perform manipulations
r! Pr = %wTPw—I-%wTPw
— lePw—l—lePTw
2 2T
P+ P
- (232,

0 Note that

p+P"\" p4PpT
2 2

68



Tests for Positive and Positive Semi-
Definiteness of Quadratic Form

oV=x"Px, where P=PT, is positive
definite if and only if all
eigenvalues of P are positive

oV=x"Px, where P=PT, is positive
semi-definite if and only if all
eigenvalues of P are non-
negative




Comments on the Eigenvalue Tests

oThese tests are only good for the
case when P=PT. You must
symmetrize P before applying
the above tests

oOther tests, the Sylvester’s
criteria, involve checking the
signs of principal minors of P




Negative Definite Quadratic Form

V=xTPx is negative definite if
and only if

-X"Px=x"(-P)x
is positive definite




Negative Semi-Detinite Quadratic
Form

V=Xx"Px is negative semi-definite
if and only if

-X"Px=x"(-P)x
is positive semi-definite




Example: Checking the Sign

Detiniteness of a Quadratic Form

oIs P, equivalently, is the associated
quadratic form, V=x"Px, pd, psd,
nd, nsd, or neither?

2 —06

P=1q 5

O The associated quadratic form

V =x! Px = 2:13% — 6110 + D2
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Example: Symmetrizing the Underlying
Matrix of the Quadratic Form

oApplying the eigenvalue test to
the given quadratic form would
seem to indicate that the
quadratic form is pd, which turns
out to be false

oNeed to symmetrize the
underlying matrix first and then
can apply the eigenvalue test




Example: Symetrized Matrix

o Symmetrizing manipulations

1 ™ 1([2 —-6] [ 2 o

2(P+P)—2(_o > |1 )
4

__3 2 -

0 The eigenvalues of the symmetrized
matrix are: 5 and -1

0 The quadratic form is indefinite!
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Example: Further Analysis

o Direct check that the quadratic form

IS indefinite
oTake x=[1 O0O]'. Then
T 2 —6|[1]
T Pa:_[l O]_o > _o_—2>0
oTake x=[1 1]'. Then
2 —6 || 1]

—2 <0

a:TPa.’:z{l 1]

O 2 1




Stability Test for x=0 of dx/d/=Ax
oLet V=x"TPx where P=P">0

oFor V to be a Lyapunov function,
that is, for x,=0 to be a.s,,

V(z(t)) <0

oEvaluate the time derivative of V
on the solution of the system
dx/dt=Ax---Lyapunov derivative




Lyapunov Derivative for dx/d=Ax

oNote that V(x(t))=x(t)TPx(t)
oUse the chain rule

V(z(t)) = ! Pz+ 2! Pz
x!l Al Px -+ !l PAx
ol (ATP—I—PA) €T

oWe used
o T — T AT




Lyapunov Matrix Equation

oDenote
Alp

PA=—-Q

oThen the Lyapunov derivative
can be represented as

V=—-V= —:ITTQ:IT

where

dt

Q=Q' >0




Terms to Our Vocabulary

o Theorem---a major result of
independent interest

o Lemma---an auxiliary result that is
used as a stepping stone toward a
theorem

o Corollary---a direct consequence of a
theorem, or even a lemma
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Lyapunov Theorem

The real matrix A is a.s., that is,
all eigenvalues of A have
negative real parts if and only if
for any @ = @' > o0 the solution P
of the continuous matrix
Lyapunov equation

AlP+PA=_0Q

is (symmetric) positive definite




How Do We Use the Lyapunov
Theorem?

oSelect an arbitrary symmetric
positive definite Q, for example,
an identity matrix, I,

oSolve the Lyapunov equation for
P=P’

oIf P is positive definite, the

matrix A is a.s. If P is not p.d.
then A is not a.s.




How NOT to Use the Lyapunov
Theorem

oIt would be no use choosing P to
be positive definite and then
calculating Q

oFor unless Q turns out to be
positive definite, nothing can be
said about a.s. of A from the
Lyapunov equation




Example: How NOT to Use the

Lyapunov Theorem

oConsider an a.s. matrix

1 3

A=10 -1

aolry

P =

1 0
0 1

nCompute Q = — (ATP + PA)




Example: Computing

Q = —(A"P+PA)

-1 0o | [ =1 3]
:_(_3 —1_+_o _1
| 2 =3
— | -3 2

The matrix Q is indefinite!---
recall the previous example




Solving the Continuous Matrix
Lyapunov Equation Using MATLAB

o Use the MATLAB’s command lyap
o Example:

A= _01 —31
0Q=1I, - -
oP=lyap(A,Q)

| 2.75 075

P = 1 0.75 0.50

O Eigenvalues of P are positive: 0.2729
and 2.9771; P is positive definite .



Limitations of the Lyapunov
Method

o Usually, it is challenging to analyze
the asymptotic stability of time-
varying systems because it is very
difficult to find Lyapunov functions
with negative definite derivatives

o When can one conclude asymptotic
stability when the Lyapunov
derivative is only negative semi-
definite?
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Some Properties of Time-Varying
Functions

o f(t) — 0 does not imply that f(¢t)
has a limitas ¢t — o0

o f(t) has alimitas © — oo does not

imply that f(t) — 0
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More Properties of Time-Varying
Functions

o If f(t) is lower bounded and
decreasing ( f(t) <0), then it

converges to a limit. (A well-known
result from calculus.)

o But we do not know whether f(¢t) — O
ornotas { — oC
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Preparation for Barbalat’s .Lemma

o Under what conditions
f(t) -0 as t— o
o We already know that the existence

of the limit of f(t) as t — o©
is not enough for

f(t) -0 as t— oo

90




Continuous Function

oA function f(t) is continuous if small
changes in t result in small changes
in f(t)

o Intuitively, a continuous function is a
function whose graph can be drawn
without lifting the pencil from the
paper
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Continuity on an Interval

o Continuity is a local property of a
function—that is, a function fis
continuous, or not, at a particular
point

oA function being continuous on an
interval means only that it is
continuous at each point of the
interval
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Uniform Continuity

oA function f(t) is uniformly
continuous if it is continuous and, in
addition, the size of the changes in
f(t) depends only on the size of the
changes in t but not on t itself

o The slope of an uniformly continuous
function slope is bounded, that is,

f is bounded

o Uniform continuity is a global
property of a function >




Properties of Uniformly Continuous
Function

o Every uniformly continuous function
is continuous, but the converse is not
true

o A function is uniformly continuous, or
not, on an entire interval

oA function may be continuous at
each point of an interval without
being uniformly continuous on the
entire interval
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Examples

o Uniformly continuous:
f(t) = sin(t)

Note that the slope of the above
function is bounded

o Continuous, but not uniformly
continuous on positive real numbers:

f(t) = 1/t
Note that as t approaches 0, the

changes in f(t) grow beyond any
bound o




State of an a.s. System With
Bounded Input is Bounded

o Example of Slotine and Li, “Applied
Nonlinear Control,” p. 124, Prentice
Hall, 1991

o Consider an a.s. stable LTI system
with bounded input

r = Ax <+ Bu

y = Cux
0 The state x is bounded because u is
bounded and A is a.s.
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Output of a.s. System With Bounded
Input 1s Unitormly Continuous

0 Because x is bounded and u is
bounded, @ is bounded

o Derivative of the output equation is

iy = Ci

o The time derivative of the output is
bounded

o Hence, y is uniformly continuous
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Barbalat’s L.emma

If f(t) has a finite limitas ¢ — o0
and if f(t) is uniformly continuous

(or # is bounded), then f(t) — O

as ¢t — o
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Lyapunov-Like Lemma

Given a real-valued function W(t,x)
such that

m /(t,x) is bounded below

m W(t,x) is negative semi-definite

s W( ) is uniformly continuous in
t (or W bounded) then

W(t,2) — 0 as t — oo
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Lyapunov-Like Lemma---Example;
see p. 211 of the Text

o Interested in the stability of the
orlgln of the system

1 ——2x1—F1@u;

o —T1U

whe_re u is bounded
o Consider the Lyapunov function
candidate

2 _ .2, .2
V= z]* =21 + 23

100




Stability Analysis of the System in
the Example

o The Lyapunov derivative of V is
V. = 2x1x1 4+ 22029
201 (—2x1 + xou) — 2o U
—43:'%
< 0

oThe o_rigin is stable; cannot say
anything about asymptotic stability

o Stability implies that x; and x, are
bounded



Example: Using the Lyapunov-Like
LLemma

oWe now show that
r1(t) — 0 as t — o

o Note that V=x,%+x,2 is bounded from
below and non-increasingas t — oo

o Thus V has a limit as L — 00

oNeed to show that V' is uniformly
continuous
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Example: Uniform Continuity of V

o Compute the derivative of V' and
check if it is bounded

V = —8x1x1 = —8ux1 (—2x1 4+ xou)

oThe function V is uniformly
continuous because |/ is bounded
oHence V — 0 as t — oo

oTherefore z1(t) — 0 as t — oo
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Benefits of the Lyapunov Theory

o Solution to differential equation are
not needed to infer about stability
properties of equilibrium state of
Interest

o Barbalat’s lemma complements the
Lyapunov Theorem

<= |Lyapunov functions are useful In
designing robust and adaptive
controllers




