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1 1. Concepts

1.1 Main Idea

Main ldea

Objective:

m Minimize lap time

Constraints:

m Avoid other cars
m Stay on road
m Don't skid

m Limited acceleration

Intuitive approach:
m Look forward and plan path

based on

Road conditions

Upcoming corners

=
m Abilities of car
=

etc... 1Fa
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Optimization-Based Control

Minimize
while

(lap time)
avoid other cars
stay on road

m Solve optimization problem to
compute minimum-time path
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1 1. Concepts 1.1 Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars
stay on road

m Solve optimization problem to
compute minimum-time path

m What to do if something
unexpected happens?

m We didn't see a car around
the corner!
m Must introduce feedback

ifa
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1 1. Concepts 1.1 Main Ildea

Optimization-Based Control

Minimize (lap time)
while avoid other cars
stay on road

m Solve optimization problem to
compute minimum-time path

m Obtain series of planned control
actions

m Apply first control action

m Repeat the planning procedure
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1 1. Concepts 1.1 Main Idea
Model Predictive Control
Objectives Model Constraints
Reference | Optimizer | |nput Output
—> B > Plant ——
A
Measurements
[ Do | Plan |
Plan
Plan |
Tirge
Receding horizon strategy introduces feedback.
MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 1-4

1 1. Concepts

1.2 Classical Control vs MPC

Table of Contents

1. Concepts

1.2 Classical Control vs MPC

MPC Part | — Introduction

C. Jones, F. Borrelli, M. Morari - Spring Semester 2015



1 1. Concepts 1.2 Classical Control vs MPC

Two Different Perspectives

Classical design: design C MPC: real-time, repeated optimiza-
tion to choose (1)

ye
r
D’T‘_ C P & P y
+
n
Dominant issues addressed Dominant issues addressed
m Disturbance rejection (d — y) m Control constraints (limits)
m Noise insensitivity (n — ) m Process constraints (safety)
m Model uncertainty (usually in time domain)

(usually in frequency domain)
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Constraints in Control

All physical systems have constraints:

m Physical constraints, e.g. actuator limits

m Performance constraints, e.g. overshoot

m Safety constraints, e.g. temperature/pressure limits
Optimal operating points are often near constraints.

,,,,,,,,,,,,,,,,,,, constraint
Classical control methods:

m Ad hoc constraint management

jet point

- L. constraint
Predictive control:

output

m Set point sufficiently far from constraints

m Suboptimal plant operation

m Constraints included in the design

output

m Set point optimal

m Optimal plant operation et point

Dy

tim
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1 1. Concepts 1.3 Mathematical Formulation

MPC: Mathematical Formulation

N—1
Uy (z(¢)) := argmin Z q(Tevk, Vitk)
Ue k=0
subj. to z; = z(t) measurement
Tkl = AT + Bupyy system model
Ttk € X state constraints
Ut €U input constraints
U = {ug, U1y -y Ugr N—1} optimization variables

Problem is defined by

m Objective that is minimized,

e.g., distance from origin, sum of squared/absolute errors, economic,...
m Internal system model to predict system behavior

e.g., linear, nonlinear, single-/multi-variable, ...

m Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,... i
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1 1. Concepts

1.3 Mathematical Formulation

MPC: Mathematical Formulation

argmin
Ui

s.t.

N—1
g Q(l’t+k, Ut+k)
k=0

zr = x(t)

Tipp+1 = ATypp + Bugyg

Teyk € X, Utk € Uu

Y

Plant

\

Plant State x(t)

At each sample time:

m Measure / estimate current state z(t)

Output y(t)
—>

m Find the optimal input sequence for the entire planning window N:

* * *
U = {ut7ut—{—17--

- U:+N—1}

m Implement only the first control action u;
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2 2. Examples

MPC: Applications

Computer control ns
Us Power systems
sl Traction control ms

Seconds Buildings

Refineries Minutes

Hours Nurse rostering

Train scheduling Days
:%"KVV\*»
% .
Weeks  Production planning \k\—ﬂz
ifa
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2 2. Examples 2.1 Ball on Plate

Ball on Plate

Movable plate (0.66m x 0.66m)

Can be revolved around two axis
[-++17°; —17°] by two DC motors

Angle is measured by potentiometers
Position of the ball is measured by a camera

Model: Linearized dynamics, 4 states, 1
input per axis

Input constraints. Voltage of motors

State constraints: Boundary of the plate,
angle of the plate

o
[R. Waldvogel. Master Thesis ETH, 2010] ifa
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2 2. Examples 2.1 Ball on Plate

Ball on Plate

Controller comparison: LQR vs. MPC in the presence of input constraints

0.05

0.04F
02F

‘C\R' o 0.03f
?} sampling ] ooz
_. oosf ;|| t|me 0013 ) 001F
E £
P . prediction oo
" ' horizon: 20 8 001
i —p.02}
0l -0.03} w“:,ff-;
/ 0. _D 10
L e #2323 |
_0.25 —DIZ —ﬂlﬂs —l]l1 —u,‘us 6 u,‘ns u‘,1 0‘15 u‘z u‘zs -0.05 * L . . L
- axis [m] 1 15 2 25 3 35 4
time [s]
Figure : LQR (red) vs MPC (blue) Figure : Input 3 for the upper left corner.
MPC introduces preview by predicting the state over a finite horizon
[R. Waldvogel. Master Thesis ETH, 2010] ifa
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2 2. Examples 2.1 Ball on Plate

Ball on Plate

MPC Control of a Ball and Plate System:

o
[R. Waldvogel. Master Thesis ETH, 2010] ifa
MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-12
2 2. Examples 2.2 Autonomous Quadrocopter Flight

Table of Contents

2. Examples

2.2 Autonomous Quadrocopter Flight

ifa

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015



2 2. Examples 2.2 Autonomous Quadrocopter Flight

Autonomous Quadrocopter Flight

Quadrocopters:

m Highly agile due to fast rotational dynamics

m High thrust-to-weight ratio allows for large
translational accelerations

m Motion control by altering rotation rate and/or pitch
of the rotors

m High thrust motors enable high performance control

Control Problem:
m Nonlinear system in 6D (position, attitude)
m Constraints: limited thrust, rates,...
m /ask: Hovering, trajectory tracking

m Challenges: Fast unstable dynamics

ifa
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2 2. Examples 2.2 Autonomous Quadrocopter Flight
Autonomous Quadrocopter flight
LQR MPC
LQR
0o ] MPC )
EO.S— J
o]
0 02 04 xim] 06 08 1
[M. Burri. Master Thesis ETH, 2011] ifn
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2 2. Examples 2.2 Autonomous Quadrocopter Flight

Autonomous Quadrocopter flight

Towards a Swarm of

Nano Quadrotors

Alex Kushleyev, Daniel Mellinger, and Vijay Kumar
GRASP Lab, University of Pennsylvania

[GRASP Lab. University of Pennsylvania, 2012; http://www.grasp.upenn.edu/]
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2 2. Examples 2.3 Autonomous dNaNo Race Cars

Autonomous dNaNo Race Cars

Race car:
m 1:43 scale, very light (50g) and fast
m Radio controlled
m 2.4GHz transmitter allows to run up to 40 cars

Control Problem:
m Nonlinear model in 4D (position, orientation)

m Constraints: acceleration, steering angle, race
track, other cars...

m Task: Optimal path planning and path following

m Challenges: State estimation, effects that are
difficult to model/measure, e.g. slip, small
sampling times

ifa
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2 2. Examples 2.3 Autonomous dNaNo Race Cars

Autonomous dNaNo Race Cars

[ORCA Racer Project. ETH, 2011; http://orcaracer.ethz.ch/|
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control

m Buildings account for approx. 40% of global energy use
Most energy is consumed during use of the buildings

m Building sector has large potential for cost-effective
reduction of CO, emissions

m Most investments in buidlings are expected to pay back
through reduced energy bills

A Abatement
5004 cost
€/t CO,
400
300
Residential
2o I public and Commercial
1004
2 4 6 8
0 el
10 Cumulative
-1004 i1 abatement
A potential
-200 i ] : ; i Mtco,
ntial lighting | i Condensing boilers HE !Solid wall insulation |  Floor insulation .
Do : P o H H ' ! R X + New build
: Office appliances iLoftinsylation ¢ H + Insulation schools tInsulation office ! homes with
{Hot water insulation ! Air cgnditioning residential : . i i i | iextemely
: W. ve fnsulati ' v eqnal I: ! g ! : ! 1 Commercial Draught; H 11 thigh energy
i Display cabinets Optimisation of building + Cooking appliances tlighting proofing ! {Windows ! efficiency
 Drives controls | Heat recovery i Large co‘oling
i Cavity wall insulation : Improved heating controls :
H Lo Cooling with
i Public ||g;h!|ng renewables
| Electric appliances H
Small cooling |

Greenhouse gas abatement cost curve for London buildings (2025, decision maker perspective) "
Source: Watson, J. (ed.) (2008): Sustainable Urban Infrastructure, London Edition — a view to 2025. 'FO,

Siemens AG, Corporate Communications (CC) Munich, 71pp.
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control

Integrated Room Automation:
Integrated control of heating, cooling, ventilation,
electrical lighting, blinds,... of a single room/zone

Control Task: Use minimum amount of energy (or money) to keep room
temperature, illuminance level and CO, concentration in prescribed comfort ranges

Room Temperature [degC]

28 T T T T T 7 T T L T
‘ ‘ ‘ | TroomMin
27y ‘ \ +TroomMax 1
26 J | ‘ | | ‘ ’ 'TToom .
|
25l 1 "“'}\‘I"‘R”i"{“w UL \ |
24 , [ |l i [V VANAVANA ]\ ' ‘ , ‘\
2l “ m i ‘ | * ’ ‘ J ‘ | [‘ | ‘\ I | |
) (NI R RIS “ l INY N
22 _”w 1l . J‘ "o\ ‘_“‘ | ‘\ [ \]Y | | | 4
I [ IBISAVAY AN | ]
2 W TN nonnn N 1 NNNnn
L - Il Jlll |
19 Il 1 L Il 1 1
0 100 200 300 400 500 600 700 800 900
[OptiControl Project, ETH. 2010; http://wuw.opticontrol.ethz.ch/] ifa
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Energy Efficient Building Control

Building /ﬁ

\ 4

Predictions of ...

control + weather
inputs * occupancy
VPG » . electrlc‘l(t)ll pgces
“model & * network loa
- optimization
l«—— comfort criteria

MPC opens the possibility to
m exploit building's thermal storage capacity
m use predictions of future disturbances, e.g. weather, for better planning

m use forecasts of electricity prices to shift electricity demand for grid-friendly
behavior

m offer grid-balancing services to the power network
...
while respecting requirements for building usage (temperature, light, ...) ifa
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2 2. Examples 2.4 Energy Efficient Building Control

Energy Efficient Building Control

Optimize energy efficiency using weather

redictions:
P RBC, bU|Id|ng case 3
Room Temperature [degC]
70 28 : i
reasonable violation * MPC ol \I Hl\ M H )
G%JGO- 5 6 | level = RBC H l \ ' \
2 |/ Ll » l l )
N \SAN L Nw i
og 504 \\ / . 3 |
L S ey - /. 2 ‘
3
w
& 308 // 20
Z / 1 L L 1 L L L L
@ 20 / 190 1000 2000 3000 4000 5000 6000 7000 8000 9000
2 o] Time step [h]
§ 10- R
. ‘ | ‘ Stochastlc MPC building case 3
00 50 100 150 200 250 28 _ RoomTemperature degC]

Amount of comfort violations [Kh/a]

MPC: Stochastic MPC
RBC: Current best practice Rule Based =

Controller
% 10‘00 20‘00 3(;00 4&00 50|00 sf;oo 70‘00 80‘00 9000
Time step [h]
. - . [
[OptiControl Project. ETH, 2010; http://www.opticontrol.ethz.ch/] ifa
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2 2. Examples 2.5 Kite Power

Kite Power

m Wind energy has potential to supply global
energy need.

18000

16000

m Current wind technology is not able to o
exploit the potential -
m Traditional inland wind turbines are close

to scaling limits
m Economic operation only possible at a 6000
limited number of locations

January

Altitud

March

November
May
September
July

Idea: Exploit the energy of high-altitude wind by o T
means of light tethered wings (kites) Wind speed m/s
Goal: Wind power at lower cost than coal

30 40 50 60

Exploit that

m Wind speed at 800m
= 1.5 x speed at 80m

m Power density
— (wind speed)®

ifa

270 t ~16t
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2 2. Examples 2.5 Kite Power

m Different kites proposed: flexible vs. rigid
wings (different models, nonlinear)

m On board vs. ground level generator -
m Ground level seems to be more viable for . (v—
large-scale |

m Number of lines?

Kite control problem:

m Maximize the net generated energy
m Maintain stability of the wing

m Exploit crosswind, i.e. kites fly transverse to
wind at high speed

m Satisfy physical constraints: keep the kite far
away from the ground, avoid line wrapping...

Passive phase

m Each configuration and working phase has
its own performance goal KSU wind iffa

direction
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2 2. Examples 2.5 Kite Power

Kite Power

nw ETH

Autonomous Power Cycles

Airborne Wind Energy Prototype
Swiss Kite Power

[Airbone Wind Energy Group. ETH, 2013; http://control.ee.ethz.ch/~awe/]

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-24

2 2. Examples 2.6 Automotive Systems

Table of Contents

2. Examples

2.6 Automotive Systems

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015


http://control.ee.ethz.ch/~awe/

2 2. Examples 2.6 Automotive Systems

Audi Smart Engine

Highway 101 Trip

3% L_\_/h\_/_\
\

Vehicle
~y

Velocity, m/s

Desired Speed Actual Speed

L ACC

1]

a 2000 4000 6000 6000 10000 12000 14000
Position, m

m Fact: Do not accelerate if there is a traffic jam, you will only waste fuel.
m ldea: Use traffic forecast to regulate the speed of a car to save fuel while
getting to destination on time.

m MPC regulates the desired speed (through an Automatic Cruise Control) in
order to reach the destination in the most fuel-efficient way, given a ifa

. T = —
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m Min and Max traffic speed forecast and road grade used in the MPC

ranctrainte anAd mndal
2 2. Examples 2.6 Automotive Systems

Ford Autonomous Driving on Ice

m Autonomous double-lane change.

m Road forecast and nonlinear vehicle model (driving on ice) used in MPC.
m MPC controls differential braking and steering.

m Experimental results @ 72 km/h on ice.

[Falcone, Borrelli et al. International Journal Vehicle Autonomous Systems, 2009] ifa
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2 2. Examples 2.6 Automotive Systems

Volvo

m Autonomous lane keeping (minimally invasive).
m Road forecast and vehicle model used in MPC.
m MPC controls braking and steering.

[Gray, Ali, Gao, Hedrick and Borrelli. IEEE Transactions on Intelligent Transportation Systems, 2013] ifa
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2 2. Examples 2.7 Robotic Chameleon

Robotic Chameleon

m Tracking an object (point in video) using two independent cameras.

m MPC controls cameras pan tilt and zoom to keep object in a given field of
view (constraints).

m MPC uses cameras models and forecast the object position (assuming moving
at constant acceleration over the prediction horizon).

m Experimental results with MPC solved at 100 Hz.

[Avin, Borrelli et al. Autonomous Robots, 2008] ifa

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 2-28

3 3. Summary and Outlook

Table of Contents

3. Summary and Outlook
3.1 Summary
3.2 Literature

ifa

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 xxviii



3 3. Summary and Outlook 3.1 Summary

Table of Contents

3. Summary and Outlook
3.1 Summary

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015

3 3. Summary and Outlook 3.1 Summary

Summary: MPC

N—1
argmin E (T4, Upt k)
Ut k=0

Y

Plant /"

s.t. x = ()
Tipp+1 = ATipp + Bugyg
Tt [ € X, Utk ceu

)

Plant State x(t)

At each sample time:
m Measure /estimate current state z(t)
m Find the optimal input sequence for the entire planning window N
U = {uf, Upyqs - u:+N—1}

m Implement only the first control action u;
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3 3. Summary and Outlook 3.1 Summary

Summary

m Obtain a model of the system

m Design a state observer

m Define optimal control problem

m Set up optimization problem in optimization software

m Solve optimization problem to get optimal control sequence

m Verify that closed-loop system performs as desired,
e.g., check performance criteria, robustness, real-time aspects,...

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 3-30

3 3. Summary and Outlook 3.1 Summary

Important Aspects of Model Predictive Control

Main advantages:
m Systematic approach for handling constraints
m High performance controller

Main challenges:

m /mplementation
MPC problem has to be solved in real-time, i.e. within the sampling interval
of the system, and with available hardware (storage, processor,...).

m Stability
Closed-loop stability, i.e. convergence, is not automatically guaranteed

m Robustness
The closed-loop system is not necessarily robust against uncertainties or
disturbances

m Feasibility
Optimization problem may become infeasible at some future time step, i.e.
there may not exist a plan satisfying all constraints

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015 3-31



3 3. Summary and Outlook

3.1 Summary

Outlook

m Part Il: Constrained Finite Time Optimal Control
Formulating and solving the optimization problem online

m Part Ill: Feasibility and Stability
Guaranteeing feasibility and stability by design

m Advanced Topics
Tracking, Soft-Constraints, Explicit MPC, Hybrid Systems

MPC Part | — Introduction C. Jones, F. Borrelli, M. Morari - Spring Semester 2015
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3 3. Summary and Outlook 3.2 Literature

Literature

Model Predictive Control:

m Predictive Control for linear and hybrid systems, F. Borrelli, A. Bemporad, M.
Morari, 2013 Cambridge University Press

[http://www.mpc.berkeley.edu/mpc-course-material]

m Model Predictive Control: Theory and Design, James B. Rawlings and David
Q. Mayne, 2009 Nob Hill Publishing

m Predictive Control with Constraints, Jan Maciejowski, 2000 Prentice Hall

Optimization:

m Convex Optimization, Stephen Boyd and Lieven Vandenberghe, 2004
Cambridge University Press

m Numerical Optimization, Jorge Nocedal and Stephen Wright, 2006 Springer
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1 1. Constrained Linear Optimal Control 1.1 Problem formulation

Constrained Linear Optimal Control

Cost function
N—1
Jo(z(0), Up) = p(an) + Z q(zx, uk)
k=0

m U, 2 7
m Squared Euclidian norm: p(ay) = =)y Prn and q(xy, ur) = z;, Qzr + up Rug,.

8 p=1orp=o0: plan) = |[Panly and qlae, w) = [|Quily + | Rugll.
Constrained Finite Time Optimal Control problem (CFTOC)

i (@(0) = ming,  Jo(x(0), Ty)
subj. to  xp11 = Az + Bug, k=0,...,N —1
mE€X, u, €U, k=0,...,N—1 (1)
IN € Xf
zo = x(0)

N is the time horizon and &', U, X are polyhedral regions.
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1 1. Constrained Linear Optimal Control 1.2 Feasible Sets

Feasible Sets

Set of initial states z(0) for which the optimal control problem (1) is feasible:

Xo = {x € R"| I(ug,...,uny—_1) such that z € X, up € U,
k=0,....,N—1, zy € Xy, where x3,11 = Az, + Buy}

In general X; is the set of states z; at time ¢ for which (1) is feasible:

X;= {x; € R" I(uy,...,uny_1) such that = € X, u, € U,
k=1,...,N—1, oy € Xy, where 23,11 = Az, + Buy},

The sets X; for i = 0,..., N play an important role in the the solution of the
CFTOC problem. They are independent of the cost.

MPC Part Il - CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015 1-3

1 1. Constrained Linear Optimal Control 1.3 Unconstrained Solution

Table of Contents

1. Constrained Linear Optimal Control

1.3 Unconstrained Solution

MPC Part Il - CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015



1 1. Constrained Linear Optimal Control 1.3 Unconstrained Solution

Unconstrained Solution
Results from Lectures on Days 1 & 2

For quadratic cost (squared Euclidian norm) and no state and input constraints:
{reX, veld}=R""", X =R"
we have the time-varying linear control law
u* (k) = Frz(k) k=0,...,N — 1.
If N — oo, we have the time-invariant linear control law

u* (k) = Foz(k) k=0,1,...

Next we show how to compute finite time constrained optimal controllers.
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Outline

2. Constrained Optimal Control: 2-Norm

2.1 Problem Formulation

2.2 Construction of the QP with substitution
2.3 Construction of the QP without substitution
2.4 2-Norm State Feedback Solution
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2 2. Constrained Optimal Control: 2-Norm 2.1 Problem Formulation

Problem Formulation

Quadratic cost function

N—-1

Jo(z(0), Upy) = z)y Pzy + Z ;. Qry, + up, Ruy,
k=0

with P =0, @ = 0, R > 0.
Constrained Finite Time Optimal Control problem (CFTOC).

(2)

Jo(2(0)) = min Jo(2(0), Uo)

subj. to  xp11 = Axp + Bug, k=0,...,N —1
meX, uueld, k=0,...,N—1
:ENGXf
zo = x(0)

N is the time horizon and X', U, X} are polyhedral regions.

MPC Part Il - CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015

2-6



2 2. Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Table of Contents

2. Constrained Optimal Control: 2-Norm

2.2 Construction of the QP with substitution

MPC Part Il - CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015

2 2. Constrained Optimal Control: 2-Norm 2.2 Construction of the QP with substitution

Construction of the QP with substitution

m Step 1: Rewrite the cost as (see lectures on Day 1 & 2)

= [Ug z(0)] [ 5] [Uo" z(0)')

Note: [ &7] = 0 since Jo(z(0), Uy) > 0 by assumption.

m Step 2: Rewrite the constraints compactly as (details provided on the next
slide)
G() UO S wWo + E()l’(O)

m Step 3: Rewrite the optimal control problem as

Jo(2(0) = min U5 2(0)] [ ] [T0" 2(0)T

subj. to  GoUy < wg + Foz(0)
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2 2. Constrained Optimal Control: 2-Norm

2.2 Construction of the QP with substitution

Solution

Ji (2(0)) = min

subj. to

G() Uo S Wo + E().CIZ'(O)

(U5 =(0)] [ 5 ][0 =(0)]

For a given x(0) Uj can be found via a QP solver.

MPC Part Il - CFTOC

F. Borrelli, M. Morari, C. Jones - Spring Semester 2015
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2-8

2.2 Construction of the QP with substitution

Construction of QP constraints with substitution

It X, U and X; are given by:

X ={z| A,z < b}

Then Gg, Ey and wpy are defined as follows

Go =

Ay 0
0 Ay
0 0
0 0
A,B 0

_AfAN_lB AfAN_2B

S
S

S O O

AsB

0
0

U={u|A,u<b,}

X ={z|Apz < by}

)

0
—A,
—A A
— A, A?

| —Ap AN

, Wo =

S

S

8

MPC Part Il - CFTOC
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2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution

To obtain the QP problem
J§ (@) =min  [U5 2(0)] | # % | [U" (0))
subj. to  GoUy < wy + Epz(0)
we have substituted the state equations
Trr1 = Az + Buyg

into the state constraints z;, € X.

It is often more efficient to keep the explicit equality constraints.
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2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution
We transform the CFTOC problem into the QP problem

J(@O) =min [ 2(0)] | F ] [+ =(0))
Subj. to GO,inZ S ’w()’in + Eo’inx(O)
Go’eqz = E()’eql’(())

m Define variable:

2 = |:£L':/L .. xf\/ u6 LI U’f]\f—l:|/

m Equalities from system dynamics zx11 = Axy, + Buy:

I —B - -
. A
. ! —B
| 0
1
o —A ; ~B -
O,eq — ' ) H0,eq — :
, .
. . 1 . -
. . | .
Al B 0
— | _ L
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Construction of the QP without substitution
It X, U and X; are given by:

X ={z|Azz < b} U={u|A,u < by} Xy ={z|Aszx < bs}
Then matrices Go in, Woin and Ep iy are:

0 by

S

GO,in i I M R Wo,in =

S

-

s
N
o
g

/

Foin = [—AL 0 --- 0]
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2 2. Constrained Optimal Control: 2-Norm 2.3 Construction of the QP without substitution

Construction of the QP without substitution

Build cost function from MPC cost y Py + S0 @}, Q. + uj Ruy,

]
I
v

Matlab hint:
barH = blkdiag(kron(eye(N-1),Q), P, kron(eye(N),R))
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2 2. Constrained Optimal Control: 2-Norm 2.4 2-Norm State Feedback Solution

2-Norm State Feedback Solution

Start from QP with substitution.
m Step 1: Define z = Uy + H 1 F’'z(0) and transform the problem into

J*(z(0)) = min 2 Hz
subj. to  Gpz < wg + Spz(0),

where Sy = Ey + GoH ' F', and
J*(x(0)) = J5(2(0)) — z(0)'(Y — FH=1F")z(0).

The CFTOC problem is now a multiparametric quadratic program

(mp-QP).
m Step 2: Solve the mp-QP to get explicit solution z*(z(0))

m Step 3: Obtain Uj(z(0)) from z*(z(0))

MPC Part Il - CFTOC F. Borrelli, M. Morari, C. Jones - Spring Semester 2015 2-14

2 2. Constrained Optimal Control: 2-Norm 2.4 2-Norm State Feedback Solution

2-Norm State Feedback Solution

Main Results

The Open loop optimal control function can be obtained by solving the
mp-QP problem and calculating Uj (z(0)), Vz(0) € &) as
Up* = z*(x(0)) — H1F'2(0).

The first component of the multiparametric solution has the form
u*(0) = fo(x(0)), Vz(0) € X,
fo : R™ — R™, is continuous and PieceWise Affine on Polyhedra
folx) =Flz+g. if z€CRY, i=1,...,N}

The polyhedral sets CR} = {z € R"|Hiz < Ki}, i=1,...,NJ are a
partition of the feasible polyhedron Aj.

The value function Jj(z(0)) is convex and piecewise quadratic on polyhedra.
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2 2. Constrained Optimal Control: 2-Norm 2.4 2-Norm State Feedback Solution

Example

Consider the double integrator

z(t+1) = [
y(t) = |

subject to constraints
—1<ulk) <1, k=0,...,5

—10 10
9] <oty < 1, k=0,

Compute the state feedback optimal controller u*(0)(z(0)) solving the CFTOC

problem with N =6, @ = [} (], R = 0.1, P the solution of the ARE, X; = R?.

ifa
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Example
_1 I I I ]
x,(0)
1
Figure : Partition of the state space for the affine control law »*(0) (N5 = 13)
ifa
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Outline

3. Constrained Optimal Control: 1-Norm and oco-Norm
3.1 Problem Formulation
3.2 Construction of the LP with substitution

ifn
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3 3. Constrained Optimal Control: 1-Norm and oo-Norm 3.1 Problem Formulation

Problem Formulation

Piece-wise linear cost function

N—-1

Jo(2(0), Uo) = || Panllp + D || Quilly + | Rugll (4)
k=0

with p=1or p =00, P, @, R full column rank matrices

Constrained Finite Time Optimal Control Problem (CFTOC)

Jg(2(0)) = min Jo(z(0), Uo)
0
subj. to xx11 = Axy + Bug, k=0,...,N —1
mEX, €U, k=0,...,N—1 (5)
TN € Xf
1o = x(0)

N is the time horizon and &', U, X are polyhedral regions.
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3 3. Constrained Optimal Control: 1-Norm and oo-Norm 3.2 Construction of the LP with substitution

Construction of the LP with substitution

Recall that the co—norm problem can be equivalently formulated as

ng(i)n eo+...+enyteg+...+ev
k—1
subj. to —1,e8 < £Q |Afxy + ZAjBuk;_l_j] :
j=0
N-1
—1,e5 < £P ANz + Z AjBUNlj] )
=0

—]_méfg < :I:Ruk,

k—1
k .
Az + E AJBuk_l_j eX, up €U,
j=0
N—-1
N .
A% 1y + E AJBUN_1_J' € Xf,
=0
k=0,....,N—1
7o = z(0)
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Construction of the LP with substitution

The problem results in the following standard LP

min 620
20

subj. to  Goz < W + Spz(0)

where 2z :={€{,. .., €%, €8s €N _1, UGy -, U1} € RS,
s=(m+1)N+ N+ 1 and

— G- 0 | S | we
N A A I

For a given z(0) U can be obtained via an LP solver (the 1—norm case is
similar).
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1- /oo-Norm State Feedback Solution

Main Results

The Open loop optimal control function can be obtained by solving the
mp-LP problem and calculating 25 (z(0))

The component uj = [0 ...0 I,, 0 ... 0]z;(x(0)) of the multiparametric
solution has the form

u”(0) = fo((0)), Vz(0) € &b,
fo : R™ — R™, is continuous and PieceWise Affine on Polyhedra
folx) =Flz+g. if z€CRY, i=1,...,N}

The polyhedral sets CR} = {z € R"|Hiz < Ki}, i=1,...,NJ are a
partition of the feasible polyhedron Aj.
In case of multiple optimizers a PieceWise Affine control law exists.

The value function JJ(z(0)) is convex and piecewise linear on polyhedra.
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1 1. Basic Ideas of Predictive Control

Infinite Time Constrained Optimal Control
(what we would like to solve)

Ji (£(0)) = min > q(wk, up)
k=0

s.t. xx11 = Az + Bug, k=0,...,N —1
e X, ucU,k=0,...,.N—1
zo = z(0)

m Stage cost ¢(z, u) describes “cost” of being in state x and applying input u

m Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions

m We'll see that such a control law has many beneficial properties...
... but we can’t compute it: there are an infinite number of variables

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015
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1 1. Basic Ideas of Predictive Control

Receding Horizon Control
(what we can sometimes solve)

£ (z(t)) = min p(2eqn) + z_: Q( ety Uitk)
k=

Sllbj. to Tt+k+1 = A$t+k + But+k, k= O,...,N— 1
LL’H_]CGX, Utk EZ/{, kZO,,N—l
ZUH_NGXf
xy = x(t)

where Uy = {ug, ..., U N—1}-
Truncate after a finite horizon:

m p(x:n) : Approximates the ‘tail’ of the cost

m X; : Approximates the ‘tail’ of the constraints

(1)

MPC Part Ill — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 1-3
1 1. Basic ldeas of Predictive Control
On-line Receding Horizon Control
past future
_reference tj ,,,,,,,,,,,,,,,,, o -
predicted outputs y(t + k|t)
t t+1 t+ N, t+Np >
—
77777777777777777777777777777777 (t+1+k\z‘+17)”
ﬁd u(t +1)
manipulated inputs
u(t +1+k)
tE1 t42 t+14N,, t+1+N,:,
At each sampling time, solve a CFTOC.
Apply the optimal input only during [t,t + 1]
At t + 1 solve a CFTOC over a shifted horizon based on new state
measurements
The resultant controller is referred to as Receding Horizon Controller
(RHC) or Model Predictive Controller (MPC). i
MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 1-4



1 1. Basic Ideas of Predictive Control

On-line Receding Horizon Control

1) MEASURE the state z(t) at time instance ¢

2) OBTAIN U} (z(t)) by solving the optimization problem in (1)
3) IF U(x(t)) =0 THEN ‘problem infeasible’ STOP

4) APPLY the first element u} of U} to the system

5) WAIT for the new sampling time ¢t + 1, GOTO 1)

Note that, we need a constrained optimization solver for step 2).

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015
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2 2. History of MPC

History of MPC

m A. |. Propoi, 1963, “Use of linear programming methods for synthesizing
sampled-data automatic systems”, Automation and Remote Control.

m J. Richalet et al., 1978 “Model predictive heuristic control- application to
industrial processes”. Automatica, 14:413-428.

m known as IDCOM (ldentification and Command)

impulse response model for the plant, linear in inputs or internal variables
(only stable plants)

quadratic performance objective over a finite prediction horizon

future plant output behavior specified by a reference trajectory

ad hoc input and output constraints

optimal inputs computed using a heuristic iterative algorithm, interpreted as
the dual of identification

m controller was not a transfer function, hence called heuristic

MPC Part Ill — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 2-6

2 2. History of MPC

History of MPC

m 1970s: Cutler suggested MPC in his PhD proposal at the University of
Houston in 1969 and introduced it later at Shell under the name Dynamic
Matrix Control. C. R. Cutler, B. L. Ramaker, 1979 “Dynamic matrix
control — a computer control algorithm™. AICHE National Meeting, Houston,

TX.
m successful in the petro-chemical industry
m linear step response model for the plant
m quadratic performance objective over a finite prediction horizon
m future plant output behavior specified by trying to follow the set-point as
closely as possible
m input and output constraints included in the formulation
m optimal inputs computed as the solution to a least—squares problem

m ad hoc input and output constraints. Additional equation added online to
account for constraints. Hence a dynamic matrix in the least squares problem.

m C. Cutler, A. Morshedi, J. Haydel, 1983. “An industrial perspective on
advanced control”. AICHE Annual Meeting, Washington, DC.

m Standard QP problem formulated in order to systematically account for
constraints.

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 2-7



2 2. History of MPC

History of MPC

m Mid 1990s: extensive theoretical effort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability

m 2000s: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems

m 2010s: stochastic MPC; distributed large-scale MPC; economic MPC

MPC Part Ill — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 2-8
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3 3. Receding Horizon Control Notation

RHC Notation

z(t+1) = Az(t) + Bu(t)
y(t) = Cx(t)

z(t) € X, u(t) eU, Vt >0
The CFTOC Problem

N-1
i (z(t) = min p($t+N|t) + E (1($t+k:|t7 ut+kz|t)
Ut ien|t
k=0
subj. to  Tyypy1)e = ATyge + Bugype, £=0,...,N—1
xt—{-kz|t - X, ut+k|t EZ/{, k:O,,N—]_
TiyN|t € Xy
xtIt = x(t)
with Ut—>t+N|t = {ut|t7 ceey Ut+N—1|t}- e
MPC Part Ill — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-9

3 3. Receding Horizon Control Notation

RHC Notation

m z(1) is the state of the system at time t¢.

m Ty is the state of the model at time ¢ + £, predicted at time ¢ obtained by
starting from the current state z;; = z(t¢) and applying to the system model

Tep|e = Azyy + By,

the input sequence us, ..., Upyp—1|¢-

m For instance, x3); represents the predicted state at time 3 when the prediction
is done at time ¢ = 1 starting from the current state z(1). It is different, in
general, from x35 which is the predicted state at time 3 when the prediction
is done at time ¢ = 2 starting from the current state z(2).

m Similarly u;; )¢ is read as “the input u at time ¢ + k computed at time ¢".
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3 3. Receding Horizon Control Notation

RHC Notation

mLet Uf,y npe = {uZ‘lt, e uZ‘+N_1|t} be the optimal solution. The first

element of Ut*_>t+N|t is applied to system

u(t) = uy (2(1)).
m The CFTOC problem is reformulated and solved at time ¢ + 1, based on the

new state ;1441 = (¢ +1).

Receding horizon control law

el (1)) = ugy, (2(1))

Closed loop system

(t+1) = Az(t) + Bfy(2(1)) = fala(t), t =0

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 3-11

3 3. Receding Horizon Control Notation

RHC Notation: Time-invariant Systems

As the system, the constraints and the cost function are time-invariant, the
solution f;(z(t)) becomes a time-invariant function of the initial state z(¢). Thus,
we can simplify the notation as

N-1
Jg(2(t)) = min plan) + > qlwe, )
0 k=0
subj. to
g1 = Axy + Bug, k=0,...,N —1
meX, uueld, k=0,...,N—1
N € Xf
19 = z(t)
where Uy = {ug, ..., un_1}.

The control law and closed loop system are time-invariant as well, and we write

Jo(xo) for fi((1)).
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4 4. MPC Features

MPC Features

Pros

m Any model

m linear

nonlinear
single/multivariable
time delays
constraints

m Any objective:
m sum of squared errors
m sum of absolute errors (i.e.,
integral)
m worst error over time
m economic objective

Cons

m Computationally demanding in
the general case

m May or may not be stable

m May or may not be feasible
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4 4. MPC Features

Example: Cessna Citation Aircraft

Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

[—1.2822 0 098 0 —0.3
P 0 0 1 0 - 0 |

—5.4293 0 —1.8366 0 —17

—128.2 128.2 0 0 0 Angle of attack
o1 00 v
¥=19 0 0o 1* X N—_— SN

m Input: elevator angle

m States: x;: angle of attack, x»: pitch angle, z3: pitch rate, x4: altitude

m Outputs: pitch angle and altitude

m Constraints: elevator angle +0.262rad (+15°), elevator rate +0.524rad
(+£60°), pitch angle +0.349 (£39°)

Open-loop response is unstable (open-loop poles: 0, 0, —1.5594 + 2.29¢)

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 4-14

4 4. MPC Features

LQR and Linear MPC with Quadratic Cost

m Quadratic cost
m Linear system dynamics

m Linear constraints on inputs and states

MPC
LR
N—1
S JY(x(t)) = min xT x""UITR’U,
Joo (z(¢)) = min thTth+ u,;‘FRuk 0 (2(1) Uo ;) ko Q k k
k=0
S.t. Tpp1 = Axk + Bug, S Tk+1 I + Dbuy
. € X, up €U
7 = a?)

1o = z(t)

Assume: Q= QT >0, R=RT ~ 0
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4 4. MPC Features

Example: LQR with saturation

Linear quadratic regulator with saturated inputs.

Problem parameters:

Sampling time 0.25sec,

At time ¢t = 0 the plane is flying with a deviation of Q=1 R=10

10m of the desired altitude, i.e. zy = [0;0;0; 10] ’
_ 200 2 5 m Closed-loop system is
\E; 100} Ry unstable

9 .
g 0 g m Applying LQR control
< -100} 5 and saturating the
2
-200 - - 5 controller can lead to
0 2 4 6 8 10 . e
Time (sec) instability!

5 05

g

=

2

2 0

©

S

®©

>

(0]

o -05 - - -

0 2 4 6 8 10
Time (sec) R
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4 4. MPC Features

Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints |u;| < 0.262 Problem parameters:

Sampling time 0.25sec,
Q=1 R=10 N=10

The MPC controller uses the

Altitude x, (m)

knowledge that the elevator
will saturate, but it does not
consider the rate constraints.

Pitch angle X, (rad)

= System does not

Time (sec) converge to desired
5 05 steady-state but to a
S limit cycle
Lo
g 0
S
©
>
o
w -0.5 y !
0 2 4 6 8 10
Time (sec) .
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4 4. MPC Features

Example: MPC with all Input Constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;]| < 0.349 Sampling time 0.25sec,
approximated by |uy — ux—1| < 0.3497 Q=1 R=10, N =10
20 0o . The MPC controller
o . .
B £ considers all constraints on
~ N
= 10 O % the actuator
o ©
3 c
£ 0 022
< S )
T m Closed-loop system is
-10 : - : : 0.4
0 2 4 6 8 10 stable
Time (sec)
S 02 , , , , m Efficient use of the
© .
< o control authority
o
2 o0
©
£ -0.1
>
K
w -0.2 L L L L
0 2 4 6 8 10
Time (sec) .
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4 4. MPC Features

Example: Inclusion of state constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;]| < 0.349 Sampling time 0.25sec,

approximated by |uy — uk_1| < 0.3497 Q=1 R=10, N=10
150 o5 - Increase step:

£ 100 By 8 At time t = 0 the plane is

= 0 ;N flying with a deviation of

_é o0 ] Osg 100m of the desired altitude,

Z of : s — 10-0- 0-

< - Pitch angle ~-0.9, i.e. -50° g & T [0; 0;0; 100]
50 2 4 6 8 10

_ Time (sec) m Pitch angle too large

T 05 duri .

8 uring transient

2

&

5

®

ks .

w ~0-5 2 4 6 8 10

Time (sec)
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4 4. MPC Features

Example: Inclusion of state constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;]| < 0.349 Sampling time 0.25sec,
approximated by |uy — uk_1| < 0.3497 Q=1 R=10, N =10
150 : : : : 04 = Add state constraints for
£ 100 Constraint,Qn pitch angle active loo £ passenger comfort:
=< Z,
(0] R
'5 50 0 % |LL‘2’ < 0.349
Z o0 -0.25
2
% 2 4 6 8 10
Time (sec)
5 05
g
2
(@]
g owm
S
®©
ks
LlJ _0.5 i i i i
0 2 4 6 8 10
Time (sec) R
ifa
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4 4. MPC Features
Example: Short horizon
MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |uy — up_1| < 0.3497T Q=1 ,R=10, N =4
20 05 5 Decrease in the prediction
£ £ horizon causes loss of the sta-
< o bility properties
§ o lo 2 Y Prop
=2 S
< S
T
0% 2 4 6 8 10°°
Time (sec)
5 05
g
o
g ot - -
©
5
®©
>
M =05 2 4 6 8 10
Time (sec)

ifa
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4 4. MPC Features

Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:

and rate constraints |i;| < 0.349
approximated by |u; — ux—1| < 0.3497

N
o

Sampling time 0.25sec,
Q=1  R=10, N =14

Inclusion of terminal cost and

0.2 =
a3 £ constraint provides stability
~ [aV)
= 10 0o x
S =)
e} c
2 o} -022
< 2
=
-10 : : : : 0.4
0 2 4 6 8 10
Time (sec)
5 0.2
s
S 041 :
o
g o0
S
w —0.1 .
>
o
w -0.2 i i ;
0 2 4 6 8 10
Time (sec) .
ifn
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5 5. Stability and Invariance of MPC
Table of Contents
5. Stability and Invariance of MPC
ifa
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5 5. Stability and Invariance of MPC

Loss of Feasibility and Stability

What can go wrong with “standard” MPC?
m No feasibility guarantee, i.e., the MPC problem may not have a solution

m No stability guarantee, i.e., trajectories may not converge to the origin

MPC Part Il — Feasibility and Stability F. Borrelli, C. Jones, M. Morari - Spring Semester 2015 5-22

5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator
Consider the double integrator

Wi+1) = |, x(t)+[
1 0

subject to the input constraints

~0.5 < u(t) <05

B EECHH}

Compute a receding horizon controller with quadratic objective with

and the state constraints

1 0

N=3, P=Q= [0 .

], R = 10.
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator

The QP problem associated with the RHC is

13.50
H = [—10.00 22.00
—0.50 —10.00 31.50

~10.00 —0.50
_10.00} | F = [T108010.00 -0.50] |y _ [14.50 23.50

—20.50 10.00 9.50 23.50 54.50

- 0.50

—1.00 0.50 A

© 0.50 0.50 7
—0.50 1.00 —0.50 —0.50 —0.50 - 0.50
—0.50 0.00 0.50 0.50 0.50 g-gg
—0.50 0.00 —0.50 ~0.50 —0.50 200
0.50 0.00 —0.50 —0.50 —0.50 500
0.50 0.00 0.50 0.50 0.50 500
—1.00 0.00 0.00 0.00 0.00 500
0.00 —1.00 0.00 8'88 8.88 2'88
1.00 0.00 0.00 : : .
@ 1% o s 0% o
Go 0.00 0.00 1.00 | Eo (1)-88 (1)-88 Wo 0.50
0.00 0.00 0.00 050 —0.50 5.00
—0.50 0.00 0.50 . . 5.00
0.00 0.00 0.00 —1.00 —1.00 5-88
0.50 0.00 —0.50 0.50  0.50 8-50
~0.50 0.00 0.50 —0.50 —1.50 0'20
0.50 0.00 —0.50 0-00 4-80 500
0.00 0.00 0.00 500 1.00 5.00
s 0% 8
L 0.00 0.00 0.00 - 0.00 —1.00 | 5.00
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5 5. Stability and Invariance of MPC

F. Borrelli, C. Jones, M. Morari - Spring Semester 2015

Example: Loss of feasibility - Double Integrator

1) MEASURE the state z(t) at time instance ¢

2) OBTAIN Uj(z(t)) by solving the optimization problem in (1)
3) IF Ug(z(t)) =0 THEN ‘problem infeasible’ STOP

4) APPLY the first element uj of UJ to the system

5) WAIT for the new sampling time ¢t + 1, GOTO 1)

Depending on initial condition, closed loop trajectory may lead to states for which
optimization problem is infeasible. :
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5 5. Stability and Invariance of MPC

Example: Loss of feasibility - Double Integrator
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1
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|
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0000DOnOODTg 00000000
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Ul1boo00docoononad0o00000000

O0000O00O
O00O0O00O0,
CO00O0O0Q
00000,
oOooopoooooog
OOOObDDDDDD

E:

o

X
=

Boxes (Circles) are initial points leading (not leading) to feasible closed-loop
trajectories
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5 5. Stability and Invariance of MPC

Example: Feasibility and stability are function of tuning

Unstable system [ ] (t) + H u(t)
<

Input constraints —1 < wu(t) <1

Parameters: () = [(1) (1)]

. —10 10
State constraints [_10] <z(t) < [10]

Investigate the stability properties for different horizons N and weights R by
solving the finite-horizon MPC problem in a receding horizon fashion...
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5 5. Stability and Invariance of MPC

Example: Feasibility and stability are function of tuning

10
R =10, N = 2: all trajectories unstable. @
R =2, N = 3: some trajectories stable.

&)}

R =1, N = 4: more stable trajectories. o

* Initial points with convergent trajectories 5

o Initial points that diverge

; 1 ‘ ‘ ;
10 -10 -5 0 5 10
X X

1 1
Green lines denote the set of all feasible initial points. They depend on the horizon
N but not on the cost R = Parameters have complex effect and trajectories. i

o |
(6]

-10 -5
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5 5. Stability and Invariance of MPC

Summary: Feasibility and Stability

Problems originate from the use of a ‘short sighted’ strategy
= Finite horizon causes deviation between the open-loop prediction and the

closed-loop system: Set of feasible

Closed-loop initial states for
trajectories Open-loop 5 / open-loop
prediction

_74\‘ predictions

Set of initial
states leading to
feasible closed-
loop trajectories

_5 i j _5 i j
-5 0 5 -5 0 5
X X

1 1
|deally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

= Design finite horizon problem such that it approximates the infinite horizon
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5 5. Stability and Invariance of MPC

Summary: Feasibility and Stability

m Infinite-Horizon
If we solve the RHC problem for N = oo (as done for LQR), then the open
loop trajectories are the same as the closed loop trajectories. Hence
m If problem is feasible, the closed loop trajectories will be always feasible
m If the cost is finite, then states and inputs will converge asymptotically to the
origin

m Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller. But

m Feasibility. After some steps the finite horizon optimal control problem may
become infeasible. (Infeasibility occurs without disturbances and model
mismatch!)

m Stability. The generated control inputs may not lead to trajectories that
converge to the origin.
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5 5. Stability and Invariance of MPC

Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure feasibility
and stability:

N—-1
J§(29) = min p(zn) + q(x, ug) Terminal Cost
Yo k=0
subj. to

g1 = Az + Bug, k=0,...,N —1

meX, uueld, k=0,...,N—1

TN € Xy Terminal Constraint
19 = z(t)

p(-) and X} are chosen to mimic an infinite horizon.
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6 6. Feasibility and Stability

Table of Contents

6. Feasibility and Stability
6.1 Proof for Xy =0

6.2 General Terminal Sets
6.3 Example

ifa
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6 6. Feasibility and Stability

F. Borrelli, C. Jones, M. Morari - Spring Semester 2015

XXXi

6.1 Proof for Xp=0

Table of Contents

6. Feasibility and Stability
6.1 Proof for Xy =0

ifa
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Feasibility and Stability of MPC: Proof

Main steps:

m Prove recursive feasibility by showing the existence of a feasible control
sequence at all time instants when starting from a feasible initial point

m Prove stability by showing that the optimal cost function is a Lyapunov
function

Two cases:
Terminal constraint at zero: zy = 0
Terminal constraint in some (convex) set: zy € X

General notation:

N-1
J(w) =min plaw) + 3 q(ziw)
Uo — o

terminal cost stage cost

Quadratic case: ¢(z;, w;) = 7 Qu; + ul Ruy, p(zn) = zf Py
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Stability of MPC - Zero terminal state constraint

Terminal constraint: oy € Xy =0
m Assume feasibility of 2y and let
{ug, uy, ..., u}y_,} be the optimal control
sequence computed at xy and {z(0), z;, ..., zn}
be the corresponding state trajectory

m Apply u} and let system evolve to z(1) = Axy + Buj

m At z(1) the control sequence
{uf, u3, ..., uy_,, 0} is feasible (apply O control
input = zx11 = 0)

= Recursive feasibility v/

= J§(x) is a Lyapunov function — (Lyapunov) Stability v/
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Stability of MPC - Zero terminal state constraint

Terminal constraint: 2y € Xy =0

m Assume feasibility of 2y and let
{ug, uy, ..., uy_,} be the optimal control
sequence computed at xy and {z(0), z;, ..., zn}
be the corresponding state trajectory
m Apply u} and let system evolve to z(1) = Axy + Buj
m At z(1) the control sequence
{uf, w3, ..., uy_q, 0} is feasible (apply O control
input = 211 = 0)

= Recursive feasibility v/

= J§(x) is a Lyapunov function — (Lyapunov) Stability v/
ifa
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Stability of MPC - Zero terminal state constraint

Terminal constraint: oy € Xy =0
Goal: Show Jj(z1) < J§(z0) Vay #0

——

N—-1
Ji (20) = plan) + Y qlwi, u
=0
=0

q(zi, u;) — (20, vy) + q(zn, un)

=0
= Jo(a0) = (w0, u) +  ¢(0,0)
——

——
Subtract cost =0, Add cost
at stage 0 for staying at 0

= J§(x) is a Lyapunov function — (Lyapunov) Stability v/
ifa
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Example: Impact of Horizon with Zero Terminal Constraint

System dynamics:

12 1 1
Tkl =g | T g5

Constraints:

Xi={z | -50<z <50, -10< 2 <10} ={z | Apxz < b, }
U:={u | llullc <1} ={u [ Ayu < by}

Stage cost:
! L 0 T
q(z,u) == THuU U
0 1
ifa
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6 6. Feasibility and Stability 6.1 Proof for Xy = 0

Example: Impact of Horizon with Zero Terminal Constraint

101

Maximum
Control-Invariant
Set

-1 1
—%O 0 50
The horizon can have a strong impact on the region of attraction. ifa
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Table of Contents

6. Feasibility and Stability

6.2 General Terminal Sets
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Extension to More General Terminal Sets

Problem: The terminal constraint zy = 0 reduces the size of the feasible set
Goal: Use convex set X to increase the region of attraction

s, Feasible set for x,€ 4 Double integrator

Feasible set for x,=0

27 -
1 1 0
n r(t+1) = 0 1] z(t) + [1] u(t)
<0 -5 5)
< <
1t [—5_ - x(t) - [5
2 —0.5 < wu(t) <0.5
1 0
6 -4 -2 Xcé 2 4 6 N:5,Q:[O 1 , =10

Goal: Generalize proof to the constraint zy € X
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Invariant sets

Definition: Invariant set

A set O is called positively invariant for system z(t + 1) = f(z(t)), if
z(0) € O = x(t) € O, Vte N,

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set Q.

Invariant
- Recursively
feasible
Infeasible after
two steps
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Main Result

Assumptions
Stage cost is positive definite, i.e. it is strictly positive and only zero at the

origin
Terminal set is invariant under the local control law v(ay):
Tpy1 = Axy + Bo(zy) € Xy, for all o, € &
All state and input constraints are satisfied in X:

Xy C X, v(z) €U, forall z € X

Terminal cost is a continuous Lyapunov function in the terminal set X; and
satisfies:

p(zh+1) — p(r) < —q(aw, v(zy)), for all 2, € X
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Under those 3 assumptions:

The closed-loop system under the MPC control law uj(z) is asymptotically stable
and the set A’ is positive invariant for the system z(k + 1) = Az + Buj(z).
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Outline of the Proof

m Assume feasibility of z(0) and let
{ug, uy, ..., uy_,} be the optimal control
sequence computed at z(0) and {z(0), =1, ..., zn}
the corresponding state trajectory

m At z(1), {uf, us, ..., v(xyn)} is feasible:

Ty is in Xy — v(zy) is feasible

and IN41 = Axn + BU(ZEN) in Xf

= Terminal constraint provides recursive feasibility
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Stability of MPC - Outline of the Proof

m Assume feasibility of z(0) and let
{ug, uy, ..., uy_,} be the optimal control
sequence computed at z(0) and {z(0), =1, ..., zn}
the corresponding state trajectory

)
>
()
3
(9]
Q@

m At z(1), {uf, us, ..., v(xy)} is feasible:
Ty is in Xy — v(zy) is feasible

and IN41 = Azy + Bv(a:N) in Xf

= Terminal constraint provides recursive feasibility

ifa
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Asymptotic Stability of MPC - Outline of the Proof
N—1
Z q xl? 7 +p 33]\/')
1=0

Feasible, sub- optimal sequence for a1 : {u}, w3, ..., v(zy)}

Y1) < Z q(zi, u;) + p(Azy + Bu(zn))

N—

=

' q(zs, u7) + plan) — (20, uy) + p(Azy + Bu(zy))
— p(an) + q(zn, v(zN))
= Jg (20) = q(20, ug) + p(Azy + Bu(an)) — p(an) + q(an, v(zy))

~"

p(z)<0

= Jy(z1) — Jg (20) < —q(20, %), ¢ >0

J§(z) is a Lyapunov function decreasing along the closed loop trajectories

= The closed-loop system under the MPC control law is asymptotically stable
ifa
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

N—-1
J§(x0) = min 2y Pry + E 7y, Qi + up Ruy, Terminal Cost
0 k=0
subj. to
g1 = Azy + Bug, k=0,...,N —1
meX, uueld, k=0,...,N—1
TN € Xy Terminal Constraint
zo = z(t)
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

m Design unconstrained LQR control law
Fo=—(B'PwB+R)"'B P,
where P, is the solution to the discrete-time algebraic Riccati equation:
Py = AP A+ Q— AP, B(B'PouB+ R)"'B'P A

m Choose the terminal weight P = P,

m Choose the terminal set X to be the maximum invariant set for the
closed-loop system z311 = (A + BF )y

Tpy1 = Axy, + BFoo(ay) € Xy, for all o, € X
All state and input constraints are satisfied in X:

Xy CX, Foxp, €U, forall o, € Xy
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

The stage cost is a positive definite function

By construction the terminal set is invariant under the local control law
v=Fyz

Terminal cost is a continuous Lyapunov function in the terminal set X; and
satisfies:

Ty 1 Prip1 — 2, Pry, =1, (— Poo + A'Poo A — A'Poo B(B'Poo B+ R) ' B'Poo A) 3y,

= —;,Quy,

-
All the Assumptions of the Feasibility and Stability Theorem are verified.
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Unstable Linear System

System dynamics:

12 1 1
Tt =g | T 5] U

Constraints:

Xi={z | -50<z <50, -10< 2 <10} ={z | Apz < b, }
U:={u | llullc <1} ={u [ Ayu < by}

Stage cost:

q(z,u) =2’ [(1) (1)] z4+ulu

Horizon: N = 10
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Designing MPC Problem

Compute the optimal LQR controller and cost matrices: F.,, Py
Compute the maximal invariant set Xr for the closed-loop linear system
Tp+1 = (A + BF )z subject to the constraints

oo | [ ]o< 1))

10
5 |
0 %
_5 |
o 0 50 s
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Closed-loop behaviour
6?

s ~10 5 0 5 o
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6 6. Feasibility and Stability 6.2 General Terminal Sets
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Example: Lyapunov Decrease of Optimal Cost
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6 6. Feasity and Sty 62 General Terminal St

Stability of MPC - Remarks

m The terminal set Xy and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint reduces the region of attraction.
(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in practice?
m Generally not...

m Not well understood by practitioners
m Requires advanced tools to compute (polyhedral computation or LMI)

m Reduces region of attraction
m A ‘real’ controller must provide some input in every circumstance
m Often unnecessary

m Stable system, long horizon — will be stable and feasible in a (large)
neighbourhood of the origin
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6 6. Feasibility and Stability 6.2 General Terminal Sets

Choice of Terminal Set and Cost: Summary

m Terminal constraint provides a sufficient condition for stability

m Region of attraction without terminal constraint may be larger than for MPC
with terminal constraint but characterization of region of attraction extremely

difficult
m X; = 0 simplest choice but small region of attaction for small N
m Solution for linear systems with quadratic cost
m In practice: Enlarge horizon and check stability by sampling

m With larger horizon length N, region of attraction approaches maximum
control invariant set
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6 6. Feasibility and Stability 6.3 Example

Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |u; — ux—1| < 0.3497 Q=1 R=10, N =4
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6 6. Feasibility and Stability 6.3 Example

Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

m An infinite-horizon provides stability and invariance.

m We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose infinite-horizon
cost can be expressed in closed-form.

m These ideas extend to non-linear systems, but the sets are difficult to
compute.
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7 7. Extension to Nonlinear MPC
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7 7. Extension to Nonlinear MPC

Extension to Nonlinear MPC

Consider the nonlinear system dynamics: z(t + 1) = g(z(t), u(t))

N—1
Jg (2(t)) = min o)+ > g, )
0 k=0
subj. to  xgr1 = g(xk, ux), k=0,...,N —1
xmeX, uueUd, k=0,...,.N—1
xNEXf
1o = x(t)

m Presented assumptions on the terminal set and cost did not rely on linearity

m Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

— Results can be directly extended to nonlinear systems.

However, computing the sets Xr and function p can be very difficult!
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