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An Introduction to Observers
DAVID G. LUENBERGER, SENIOR MEMBER, IEEE

Abstract—Observers which approximately reconstruct missing
state-variable information necessary for control are presented in an
introductory manner. The special topics of the identity observer, a
reduced-order observer, linear functional observers, stability prop-
erties, and dual observers are discussed.

I. INTRODUCTION

T IS OFTEN convenient when designing [eedback

control systems io assume inifially that the entire
state vector of the system to be controlled is available
through measurement. Thus for the linear time-invariant
system governed by

() = Ax(t) + Bu(l) (1.1)

where x is an n X 1 slate vector, u is an r X 1 input
vector. 4 is an n X n system matrix, and Bisann X r
distribution matrix, one might design a feedback law of
the form u(i) = ¢(x(#), {} which could be implemented if
x(t) were available. This is, for example, precisely the
form of control law that results from solution of a quadratic
loss optimization problem posed for the system (1),
from design techniques that place peles at prespecified
points, and from numerous other techniques that insure
glability and in some sense improve system performance.

If the entire statc vector cannot be measured, as is

typical in most complex syvstems, the eontrol law deduceed
m the form u(f) = U(x(l), f) cannot be implemented.
Thus either a new approach that direetly aceounts
for the nonavailability of the entire state veetor must be
devised, or a suitable approximation to the state vector
must be determined that ean be substituted into the con-
trol law. In almost every situation the latter approach,
that of developing and using an approximate state veetor,
is vastly simpler than a new direef attack on the design
problem.

Adopting this point of view. that an approximate state
vector will be substituted for the unavailable state,
results in the decomposition of a control design problem
into two phases. The first phase i= design of the control
law assuming that the state vector is available. Thiz may
be based on optimization or ether design technigues and
typically results in a control law without dynamics. The
second phasge 12 the design of a system that produces an
approximation to the state vector. This svstem, which
in a deterministic setting is called an observer, or Luen-
berger observer (o distinguish it from the Kalman filter,
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has as its inputs the inputs and available outputs of the
system whose state is to be approximated and has a state
vector that is lincarly related to the desired approxima-
tion. The observer is a dynamic system whose charac-
teristics are somewhat free to be determined by the de-
signer, and it iz through ils infroduction that dynamiecs
enter the overall two-phase design procedure when the
entire state is not available.

The observer was first proposed and developed in [1]
and further developed in [2]. Since these ecarly papers,
which concentrated on observers for purcly deterministic
continuous-time linear time-invariant systems, observer
theory has been extended by several researchers to include
time-varying systems, discrete systems, and stochastic
systems [3]-[18]. The effect of an observer on system
performance (with respeet to a quadratie cost functional)
has been examined [5], [19]-[22]. New insights have been
obtained, and the theory has been substantially stream-
lined [23]-[253]. At the same time, since 1964, observers
have formed an integral part of numerous control system
designs of which a small percentage have been explicitly
reported [26]-[31]. The simplicity of its design and its
resolution of the difficulty imposed by missing measure-
ments make the observer an aftractive general design
component [24], [32], [33].

In addition to their practical utility, observers offer a
unique theoretical fascination. The associated theory is
intimately related fo  the fundamental linear system
concepts of controllability, observability, dynamie re-
sponse, and stability, and provides a simple setting in
which all of these coneepts interact. This theoretical
richness has made the observer an attractive area of re-
search.

This paper disensses the basie clements of observer
design from an clementary viewpoint. For simplicity
attention is restricted, as in the early papers, to deter-
miniztic eontinuous-time linear timce-invariant systems.
The approach taken in this paper, however, 1s influenced
stubstantially by the simplification and insights derived
from the work of several other authors during the past
seven years. In order to highlight the new techniques and
to provide the oppertunity [or comparison with the
old, many of the ocxample systems presented in this paper
are the same as in the earlier papers.

11. Bastc Tasony
A Abmost any System is an Olserver

Initially, consider the problem of observing a free
system Sy, Leo, o svstem with zero input. If the available
cutputs of thiz system ave nsed as inputs o drive another
sysfem Se the second svstem will almost always serve
65 an obgorver of the first system in that g stave will
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Fig. 1.

A simple observer,

tend to track a linear transformation of the state of the
first system (sce Tig. 1). This result forms the basis of
observer theory and explaing why there is a great deal of
freedom in the design of an observer.

Theorem 1 (Observation of a Free System): Let 8y be a
free system, #(t) = Ax(t), which drives 8., 2(f) = Fz(f) +
Hx(1). Suppose there is a transformation T safisfying
TA — FT = H. If z(0) = Tx(0), then z(/) = Tx({) for
all £ > 0. Or more generally,

a(t) = Tx(t) + e"[z(0) — Tx(0)]. (2.1)

Proof: We may write immediately
() — Tx(t) = Fz(l) + Hx(t) — TAx(l).
Substituting TA — FT = H this becomes
() — Tx(t) = Flz(t) — Tx(¥)]
which has (2.1) as a solufion.

Tt should be noted that the two systems S; and S
necd not have the same dimension. Also, it ¢can be shown
[1] that there is a unique solution T o the equation
TA — FT = Hif A and F have no common eigenvalues.
Thus any system S; having different eigenvalues from A
is an observer for 8y in Uhe sense of Theorem 1.

Next, we note that the result of Theorem 1 for free
systems can be casily extended to foreed systems by
including the input in the observer as well as the original
system. Thus if 8, is governed by

i(t) = Ax(f) + Bu(f) (2.2)
a system Sy governed by
z(t) = Fz(t) + Hx(t) + TBu(l) (2.3)

will satisfy (2.1). Thercfore, an observer for a system can
be designed by first assuming the system is free and then
incorporating the inpufs as in (2.3).

B. Identity Observer

An obviously convenient observer would be one in
which the transformation T relating the state of the
observer to the state of the original system is the identity
transformation. This requires that the observer S be of
the same dynamic order as the original system S; and that
(with T = I) F = A — H. Specification of such an ob-
server rosts therefore on specifieation of the matrix H.

The matrix H is determined partly by the fixed ontput
structure of the original system and partly by the input
structure of the observer. If 8, with an m-dimensional
output veetor y, is governed by

() = Ax()
y(t) = Cx(l)

(2.4a)
(2.4h)

a97

and S., the observer, is governed by
3(t) = Fa(t) + Gy(»

then H = GC. In designing the observer the m X n
mafrix C is fixed and the n X m matrix G is arbitrary.

(2.5)

Thus an identity observer is determined uniquely by

selection of G and takes the form

i) = (A — GO)z(t) + Gy(i). (2.6)

Any G leads to an identity observer but the dynamiec
response of the observing process is, according to Theorem
1, determined by the matrix 4 — GC.

We now state a fundamental lemma for linear systems
that shows that an identity observer can be designed to
have arbitrary dynamics if the original system is com-
pletely observable. First recall that a system (2.4) is
completely observable if the matrix

IC’:A'C'E(A')QC'E e E(A')"*IC’]

has rank n. Generally, if ann X n matrix A and an m X n
matrix C satisfy this condition we shall say (C, A4) is
completely observable.

Lemma 1: Corresponding to the real matrices C and 4,
then the set of cigenvalues of A — GC ecan be made to
correspond to the set of eigenvalues of any n X = real
matrix by suitable cheoice of the real matrix € if and
only if (C, A) is completely observable.

This lemma, which is now a cornerstone of linear
system theory, was developed in several steps over a
period of ncarly a decade. For the case m = 1, corre-
sponding to single output systems, early statements can
be found in Kalman [34) and Luenberger [L], [35]. The
general result is implicitly contained in Luenberger [2],
[36], and the problem is treated definitively in Wonham
[37]. A nice proof is given by Gopinath [25]. (It was
recently pointed out to me that Popov [38] published a
proof of a result of this type in 1964.) Caleulation of the
appropriate ¢ matrix to achieve given eigenvalue place-
ment for a high-dimensional multivariable system can,
however, be a difficult computational chore.

The result of this basic lemma translates directly into a
result on observers.

Theorem 2: An identity observer having arbitrary
dynamics can be designed for a linear time-invariant
system if and only if the system is completely observable.

In practice, the eigenvalues of the observer are selected
to be negative, so that the state of the observer will
converge to the state of the observed system, and they are
chosen to be somewhat more negative than the eigen-
values of the observed system so that convergence is
faster than other system effeets. Theoretically, the eigen-
values can be moved arbitrarily toward minus infinity,
yicelding extremely rapid convergence. This tends, how-
ever, to make the observer act like a differentiator and
thereby become highly sensitive to noise, and to introduce
other difficulties. The gencral problem of seleeting good



Fig. 2. A second-order system.

eigenvalues is still not completely resolved but the practice
of placing them so that the observer is slightly faster than
the rest of the (¢losed-loop) system seems to be a good one.

Ezample: Consider the system shown in Tig., 2. This
has state-variable representation.

%1 _ -2 1]z 0 ¢
:irz] = [ 0 _1] ﬂiz:l + I]u (2.7a)
y =1 o"‘:‘- (2.7b)
[

An identity observer is determined by specifying the
observer input vector
G = g1j|
/1]

The resulting observer system matrix is

_ —2 ={ 1 .

A—GC = I: - _1] (2.8)

which has corresponding characteristie equation
M+B+pA+2+n+g =0 (2.9)

Suppose we decide to make the observer have two eigen-
values equal to —3. This would give the characteristic
equation (A 4+ 3)2 = A* + 6x + 9 = 0. Matching coeffi-
cients from (2.9) yields g, = 3, g = 4. The observer is thus
governed by

ﬁ; . =h 1 2 3 0
srs,] = [-4 ul.]zg] + 4]-” + 1]“'

III. Repucep DmvunsioN OBSERVER

The identity observer although possessing an ample
measure of simplicity also possesses a certain degree of
redundaney. The redundancy stems from the fact that
while the observer construets an estimate of the entire
state, part of the state as given by the system outputs are
already available by direct measurement. This redundancy
can be eliminated and an observer of lower dimension but
still of arbitrary dynamics can be constructed.

The basic construction of a reduced-order observer is
shown in Fig. 3. Tf y(¢) is of dimension m, an obsetver of
order n — m i8 constructed with state z(f) that approxi-
mates Tx(f) for some m X n matrix T, as in Theorem 1.
Then an estimate () of x(¢) can be determined through

. T |~ z(t)]
() =| = ;
J [CJ ¥(t)
provided that the indicated partitioned matrix ig in-
vertible. Thus the T associated with the observer must

have n — m rows that are lincarly independent of the
rows of C.

(3.1)
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Fig. 3. Structure of reduced-order observer.

The reduced-order observer was first introduced in
[1]. The simple development presented in this section is
due to Gopinath [25].

We again consider the system

#(t) = Ax(t) + Bu(t) (3.2)
y() = Cx(i) (3.2b)

and assume without loss of generality that the m outputs
of the system are linearly independent—or equivalently
that the output distribution matrix € has rank m. In this
case 1t can also be assumed, by possibly infroducing a
change of coordinates, that the matrix C takes the form
C = [I0], i.e., C is partitioned into an m X m identity
matrix and an m X (n — m) zero matrix. (An appropriate
change of coordinates is obtained by seleciing an (n — m)
¥ nmatrix D in such a way that

v-[]

is nonsingular and using the variables x = Mx.) It is then
convenient to partition the state vector as

=]
w

and accordingly write the system in the form
y(t) = Auy(l) + Aww(l) + Byu(i)
w(l) = Any(t) + Azw(l) + Bau(l). (3.3b)

The idea of the construction is then as follows. The
veetor y(t) is available for measurement, and if we dif-
ferentiate it, so is g({). Since u(f) 1s also measureable
(3.3a) provides the measurement Apw(?) for the system
(3.3b) which has state vector w(i) and input Asy(l) +
Bu(t). An identity observer of order n — m is constructed
for (3.3b) using this measurement. Later the necessity to
differentiate y is circumvented.

The justification of the construction is based on the
following lemma [25].

(3.32)

Lemme 2: If (C, A) is completely observable, then so is
(Al'b AZ?—)-

The validity of this stalement is, in view of the preceding
diseussion, intuitively clear. It can be easily proved direetly
by applying the definition of complete observability.

To construct the observer we initially define it in the
form

w(l) = (4w — LAw)@(l) + Auy(t) + Buu(l)
+ Ly(0) — Auy(®)) — LBuw(f).

In view of Lemmas 1 and 2, L can be selected so that

(3.4)
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Tig. 4. Reduced-order ohserver using derivative,

Reduced-order observer.

Fig. 5.

A — EAy has arbitrary eigenvalues. The configuration
of this observer is shown in Fig. 4.

The required differentiation of y can be avoided by
modifying the block diagram of Fig. 4 to that of Tig. 5,
which is equivalent at the point @. This vields the desired
final form of the observer, which can be written

Z(t) = (An — LAu)z(t) + (An — LAw)Ly()

+ (Ay — LAy + (B. — LBYu(t) (3.5

with

() = @) — Ly(b). (3.6)
For this observer T = [— L], This construction cnables
us to state the following theorem.

Theorem 3: Corresponding to an nth-order completely
controllable linear time-invariant system having m
linearly independent outputs a state obscrver of order
n — m can be construeted having arbitrary cigenvalues,

Tt is important to understand that the explieit form of
the reduced-order observer given here. obtained by par-
titioning the system, is only one way to find the observer.
In any specific instance, other techniques such as frans-
forming to canonical form or simply hypothesizing the
general strueture and solving for the unknown purameters
may be algebraically simpler. Theorem 3 guarantees that
such methods will always vield an appropriate result.
The preceding method nsed in the derivation is, of course.
often a convenient one.

Fzample: Congider the system shown in Fig. 2 and
treated in the exumple of Section IT. This is o sevond-

i ]
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Tig. 6. Observer for second-order system.

order system with a single output so a first-order observer
with an arbitrary cigenvalue ecan be constructed. The €

matrix already has the required form, € = 1 0. In this
=i
case Ap — G = —1 — (7, which gives the cigenvalue

of the observer. Let us seleet @ = 2 so that the observer
will have its ecigenvalue cqual to —3. The resulting
observer attached to the svstem is shown in Fig. 6.

IV. OpsErviNGg A SINGLE LiNEAR FUNCTIONAL

For some applications an estimate of a single linear
funetional ¢ = a’x of the state is all that is required.
Tor example, a linear time-invariant control law for a
single input system is by definition determined simply by a
linear functional of the system state. The question arises
then as to whether a less complex observer ean be con-
structed to yield an estimate of a given linear funetional
than an observer that estimates the entire state. Of course,
again, it is desired to have freedom in the seleetion of the
cigenvalues of the observer.

A major result for this problem [2] s that any given
linear functional of the state, say, e = @’x, can be esti-
mated with an observer having v — 1 arbitrary cigenvalues.
Here » is the obsemvability index [2] defined as the least
positive integer for which the matrix

[crarcrane” - - 4y ier)
has rank n. Since for any completely observable system
v — 1 < n — mand for many systems » — 1 is far less
than n — m, observing a single lincar funetional of the
state may be far simpler than observing the entire state
vector.

The general form of the observer is exactly analogous
to o reduced-order observer for the entire state veetor,
The estimate of e = a’x is defined by

ét) = byl) + ¢'z(t)
(1) = Fz(f) + Hx(l) + TBu(t)

.1)
(4.2)

where F. H, T, B are as in Section IT-A and where & and ¢
are veetors satisfving b'C + ¢'T = o',

Again the important result is that the observer need
only have order » — 1. The precise design technique is
dietated by considerations of convenicnee.

We illustrate the seneral result with o single example.
The mothod used in this example can, however, be applied
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Erample: Consider the fourth-order system shown in
Fig. 7. This gystem with available measurements x; and
&y hag ebservability index 2. Thug any linear functional
can be obhserved with & first-order observer. Let ug decide
to construet an observer with a single eigenvalue equal to
—3 to observe the functional 2 -+ 24

Initially neglecting the input = we hypothesize an
observer of the form

2= —3z + 1ty + gus.

According to Theorem 1 this has an associated T gatisfying

—2 1 0 0
0 —2 10 .
T 0 0 —1 1 +3T=¢ 0 g 0 (4.3)
—1 0 0 0
IfT =14 b t by we would like &, = 1, &y = 1. Sub-
L
stituting these values in (4.3) we obtain the equation
1100
2 1 s 1 0 1 1 0 =i 0 IE] 0
1 i 00 2 1 1 i
-1 0 0 3

that can be solved for the four unknowns f, g1, & ¢
Thisresults in f = =1, & = —3. n = —2, gz =
From this the final observer shown in Fig, S is deduced by
inspection.

=8,

V. Crosep-Loor PROPERTIES

Once an observer hag been constructed for a linear
system which produces an estimate of the state vector or
of a linear transformation of the state veetor it is impor-
tant to consider the effect indueed by using this estimate
in place of the true value called for by a control faw. Of
paramount importance in this respect is the oflect of an
obgerver on the elosed-loop stability properties of the
system. It would be undesirable, for example, it an othor-
wise stable conirol design hecame unstable when it was
realized by introduction of an obgerver. Observirs,
fortunately, do not disturb stability properties when they
are introduced. In this section we show that if o linear
time-invariant control law is realized with an observer,
the resulting eigenvalues of the system are those of the

IRKEE TRANSACTIONS ON AUTOMATIC CONTROL, DECEMIsER 10T 1

obscrver itself and those that would be ebtained if the

control law could be direetly implemented. Thus an ob-

server does nob change the closed-loop cigenvalues of a

design but merely adjoins its own cigenvalues, Similar

results hold for svstems with nonlincar control laws [2],
Suppose we have the system

x(t) = Ax(t) + Bu(i) (5.1a)
y(f) = Cx(f) (5.1b)

and the control law
u(l) = Kx(1). (5:2)

If it were possible to realize this control Inw by use of
available measurements  (which would be possible if
K = RC for some R), then the elosed-loop system would
be governed by

() = (A4 4+ BK)x(l) (5.3)

and hence its cigenvalues would be the cigenvalues of
A 4+ BK.

Now if the control cannot be realized directly, an ob-
server of the form

#(t) = Fz(t) + Gy(i) + TBul(t) (5.4a)
u(l) = K&(l) = Ez(f) + Dy(h) (5.4h)
where
TA — FT = GC (5.5a)
K =ET + DC (5.5b)

can be construeted. From our previous theory (C, A)
completely observable is sufficient for there to be G,
E. D, F, T satisfying (5.5) with F having arbitrary cigen-
values. Setting u(f) = Kx({) leads to the composite system

] [ A4+ BDC BE :]x] (5.6)
:| - |6C+ TBDC F + TBE|:z St

This whele structure can be simplified by infroducing
f =z — Txand using x and ¥ as coordinates. Then (5.6)
beecomes, using (5.5)

t:| B [A + BK BE] _x].
£l 0 F |t
Thus the cigenvalues of the composite system are those of
A + BK and of F.

We note that in view of Lemma 1 (applied in its dual
form) if the system (5.1) is completely controllable it is
possible to seleet K to place the closed-loop cigenvalues
arbitrarily. If this control law is not realizable but the
system is completely observable, an observer (of some
grder no greater than o — m) enan be constructed so that
the control law enn be estimated. Sinee the cigenvalues
of the observer are also arbitrary the cigenvalues of the
complete composite systom may be seleeted arbitrarily.
We therefore state the following important result of
linear svstem theory [L], [2].

(5.7)

Theorem 4: Corresponding to an zith order completely
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Fig. 10. Compensalor for example,

controllable and completely  observable system (5.1)
having m lincarly independent outputs, a dynamie feed-
back system of order n — m ean be constructed such that
the 2n — m eigenvalues of the composite system take any
preassigned values.

Although this eigenvalue result for linear time-invariant
systems is of great theoretical interest, it should be kept
in mind that the more general key result is that stability
is not affected by a (stable) observer. Thus even for non-
linear or time-varying control laws an observer can supply
a suitable estimate.

Example: Suppose a feedback control system is to be
designed for the system shown in Fig. 2 so that its output
closely tracks a disturbance input d. The gencral form of
design is shown in Iig. 9.

For the particular system shown in Tig. 2 let us decide
to design a control law that places the cigenvalues at
—1 + 1. Tt is casily found that v = —2z; + . will ac-
complish this. If this law is implemented with the first-
arder observer constructed earlier, we obtain the overall
system shown in Fig. 10, which can be verified to have
cigenvalues —3, —1 -+ 4, —1 —1i.

VI. DuaL OBSERVERS

The fundamental property of one system observing
another can be applied in a reverse direetion to obtain a
special kind of controller. Such a controller, called a dual
observer, wag introduced by Brasch [33].

Suppose in Fig. 1 the system S, is the given system and
Sy is a system that we construet to control S.. We have
shown that the system S. tends to follow S; and hence
8, ean be considered as governing the behavior of S..

To make this discussion speeific suppose the plant

x() = Ax(l) + Bu(f) (6.1a)
y(t) = Cx(t) (6.1b)
is driven by the free system
Z(t) = Fa(t) (6.2a)
u(t) = Jz(i) (6.2b)

where AP — PF = RBJ for some P. Then from Theorem 1
we see that in this ease the veetor n = x + Pz is governed
by the equation

nif) = An(f)

601

and hence the plant follows the free system. This tracking
property can be used to define a closed-loop system for the
plant.

Rather than fix attention on the fact that only eertain
outputs of the plant are available, we concentrate on the
fact that only certain inputs, as defined by B, are available.
If we had complete freedom as to where inputs could be
supplied, the output limitation would not much matter.
Indeed, if the output y(t) = Cx(f) could be fed to the
gystem in the form

(1) = Ax() + Ly()

then the cigenvalues of the system would be the eigen-
values of A + LC. By Lemma 1, if the system is observ-
able L can be selected to place the eigenvalues arbitrarily.
The dual observer ean be thought of as supplying an
approximation to the desired inputs.

To achieve the desired result we construct the dual
observer in the form

(6.3)

2(t) = Fz(t) + Muw(t) (6.4a)
w(t) = yt) + CPz(l) (6.4b)
u(l) = Jz(t) + Nuw(t) (6.4¢)
where
AP — PF = BJ (6.52)
L = PM + BN. (6.5b)

Equations (6.5) are dual to (5.5) and will have solution
J, M, N, F with F having arbitrary eigenvalues if (6.1)
is completely controllable.

The composite system is

x'] _ [A + BNC BJ+ BNCP:I x]_

2 MC F+ MCP |z (6.6)

Introducing n = x -+ Pz and using z and » for coordinates
vields the composite system

n| [A+LC Ofn

]| MC F]lz
which is the dual of (5.7). The cigenvalues of the com-
posite system are thus seen to be the eigenvalues of A +

LC and the cigenvalues of F. We may therefore state the
dual of Theorem 4.

(6.7)

Theorem 5: Corresponding to an ath-order completely
controllable and completely observable system (6.1)
having » linearly independent inputs, a dynamic feed-
back system of order n — 7 can be constructed such that
the 2n — r eigenvalues of the composite system take any
preassigned values.

VII. CoNCLUSIONS

Tt has been shown that missing state-variable infor-
mation, not available for measurement, can be suitably
approximated by an observer. Generally, as more output
variables are made available, the required order of the
observer 1s decreased.
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Although the introductory treatment given in this
paper is restricted to time-invariant deterministic con-
tinuous-time linecar systems, much of the theory can be
extended to more general situations. The references cited
for this paper should be consulted for these extensions.
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