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Homework Instructions:

1. Type your solutions in the LATEX homework template file. Otherwise, you can use any other
typesetting tool or you can provide handwritten solutions, assuming everything is clear.

2. Due date: Wednesday, September 30th, @ 5:00pm on Blackboard, AND drop off a copy of your
solutions (slip it under the office door if I’m away).

3. Collaboration policy: you can collaborate with your classmates, under the assumption that ev-
eryone is required to write their own solutions. If you choose to collaborate with anyone, list
their name(s).

4. You don’t show your work⇒ You don’t get credit.

5. Solutions that are unclear won’t be graded.

6. Before you start with this homework assignment, make sure that you have grasped the content
of Module 04.

Problem 1 — Convexity Property

A function f : Rn → R is continuously differentiable. Also, assume that f (x) is concave on a convex
set X . Given the aforementioned properties of f (x), prove that for all x1, x2 ∈ X , f (x) satisfies this
property:

f (x2) ≤ f (x1) + D f (x1)(x2 − x1).

Hint: Back to basics—what is the basic definition of a derivative?

Solutions:

By definition, a function f (x) is concave if g(x) = − f (x) is convex. By the definition of a convex
function, we know that ∀ β ∈ [0, 1], g(x) = − f (x) satisfies:

g(βx2 + (1− β)x1) ≤ βg(x2) + (1− β)g(x1).

The above inequality can be written as:

g(x1 + β(x2 − x1))− g(x1)

β
≤ g(x2)− g(x1).

Applying the basic definition of a derivative by setting β→ 0, we obtain:

Dg(x1)(x2 − x1) ≤ g(x2)− g(x1), or

g(x2) ≥ g(x1) + Dg(x1)(x2 − x1).

Since g(x) = − f (x), we obtain:

f (x2) ≤ f (x1) + D f (x1)(x2 − x1).
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Problem 2 — Convexity of a Disc

Show that the set Ω given by Ω = {y ∈ R2; ‖y‖2 ≤ 4} is convex, where ‖y‖2 = y>y.

Hint: Show that if z = βx + (1− β)y, then ‖z‖2 ≤ 4. You might find the submultiplicative matrix-
vector property to be useful too.

Solutions:

The set Ω is convex if x, y ∈ Ω, then z = βx + (1− β)y is a point on the line joining x and y should also
be in Ω, where 0 ≤ β ≤ 1. Hence, the problem reduces to showing that z = βx + (1− β)y ∈ Ω.

‖z‖2 = z>z

‖z‖2 = (βx + (1− β)y)>(βx + (1− β)y)

= β2‖x‖2 + 2β(1− β)x>y + (1− β)2‖y‖2

≤ β2‖x‖2 + 2β(1− β)‖x‖‖y‖+ (1− β)2‖y‖2

≤ 4β2 + 8β(1− β) + 4(1− β)2

= 4β2 + 8β− 8β2 + 4 + 4β2 − 8β

= 4

Hence ‖z‖2 ≤ 4, which proves that z is in Ω and that Ω is a convex set.
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Problem 3 — Minimizing a Function

Given a multivariable function f (x), many optimization solvers use the following algorithm to solve
minx f (x):

1. Choose an initial guess, x(0)

2. Choose an initial real, symmetric positive definite matrix H(0)

3. Compute d(k) = −H(k)∇x f (x(k))

4. Find β(k) = arg minβ f (x(k) + β(k)d(k)), β ≥ 0

5. Compute x(k+1) = x(k) + β(k)d(k)

For this problem, we assume that the given function is a typical quadratic function (x ∈ Rn), as follows:

f (x) =
1
2

x>Qx− x>b + c, Q = Q> � 0.

Answer the following questions:

1. Find f (x(k) + β(k)d(k)) for the given quadratic function.

2. Obtain ∇x f (x(k)) for f (x).

3. Using the chain rule, and given that β(k) = arg minβ f (x(k) + β(k)d(k)), find a closed form solution

for β(k) in terms of the given matrices (H(k),∇ f (x(k)), d(k), Q).

4. Since it is required that β(k) ≥ 0, provide a sufficient condition related to H(k) that guarantees the
aforementioned condition on β(k).

Solutions:

1. f (x(k) + β(k)d(k)) = 1
2 (x(k) + β(k)d(k))>Q(x(k) + β(k)d(k))− (x(k) + β(k)d(k))>b + c

2. ∇x f (x(k)) = Qx(k) − b

3. Using the chain rule, and since we’re minimizing with respect to β, we obtain:

d
dβ

f (x(k) + βd(k)) =
(

x(k) + βd(k)
)>

Qd(k) − (d(k))>b = 0

⇒
(
(x(k))>Q− b>

)
d(k) = −β(d(k))>Qd(k).

Note that d(k) = −H(k)∇x f (x(k)), and since Q = Q> � 0, we obtain:

β∗k = −∇ f (x(k))>d(k)

(d(k))>Qd(k)
=
∇ f (x(k))>H(k)∇ f (x(k))

(d(k))>Qd(k)
.

4. Clearly, the condition is H(k) = (H(k))> � 0, since Q = Q> � 0.
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Problem 4 — KKT Conditions, 1

Using the KKT conditions discussed in class, obtain all the candidate strict local minima for the follow-
ing nonlinear optimization problem:

max −x2
1 − 2x2

2

subject to x1 + x2 ≥ 3

x2 − x2
1 ≥ 1

There are many cases to consider. Make sure that you don’t miss any.

After solving the problem analytically, code the problem on NEOS solver (http://www.neos-server.
org/neos/solvers/index.html), using any solver of your choice and any modeling language (GAMS,
AMPL, ...).

Solutions:

First, rewrite the optimization problem in standard form:

min x2
1 + 2x2

2

subject to −x1 − x2 + 3 ≤ 0

−x2 + x2
1 + 1 ≤ 0

Then, construct the Lagrangian:

L(x1, x2, µ1, µ2) = x2
1 + 2x2

2 + µ1(−x1 − x2 + 3) + µ2(−x2 + x2
1 + 1).

The KKT conditions are:

1. ∇x1 L(x1, x2, µ1, µ2) = 2x1 − µ1 + 2µ2x1 = 0

2. ∇x2 L(x1, x2, µ1, µ2) = 4x2 − µ1 − µ2 = 0

3. µ1(x1 + x2 − 3) = 0

4. µ2(x2 − x2
1 − 1) = 0

5. µ1, µ2 ≥ 0

6. −x1 − x2 + 3 ≤ 0

7. −x2 + x2
1 + 1 ≤ 0

There are few cases to consider:

Case 1— µ1 = µ2 = 0⇒ x1 = x2 = 0. However, condition 6 would be violated. Thus, this point doesn’t
satisfy the KKT condition and is not a candidate for a minimizer.

Case 2— µ1 ≥ 0, µ2 = 0. Given this assumption, and solving

x2 − x2
1 − 1 = 0, 2x1 − µ1 = 0, 4x2 − µ1 = 0,

we obtain a unique solution: x1 = 2, x2 = 1. However, this solution violates condition 7. Thus,
this point doesn’t satisfy the KKT condition and is not a candidate for a minimizer.

Case 3— Similar to Case 2, we choose µ2 ≥ 0, µ1 = 0. The solution obtained is x1 = 0 and x2 = 1, which
violates condition 6. Thus, this point doesn’t satisfy the KKT condition and is not a candidate for
a minimizer.
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Case 4— We now consider the case when µ1, µ2 > 0. This case implies that

−x1 − x2 + 3 = 0
−x2 + x2

1 + 1 = 0,

which implies that (3− x1)− x2
1 − 1 = 0 or x2

1 + x1 − 2 = 0. This quadratic polynomial has two

solutions: x(1)1 = −2, x(2)2 = 1. By substitution, the two solutions generate x(1)2 = 5 and x(2)2 = 2.

The first candidate point, x(1)1 = −2, x(2)2 = 5 implies that −4 − µ1 − 4µ2 (from Condition 1),
which is impossible for two positive variables µ1 and µ2.

The second candidate point, x(2)1 = 1, x(2)2 = 2 implies that µ1 = 6, µ2 = 2 (from Conditions
1 and 2)—satisfying all the KKT conditions. Therefore, x∗1 = 1, x∗2 = 2.
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Problem 5 — KKT Conditions, 2

Using the KKT conditions discussed in class, obtain all the candidate strict local minima for the follow-
ing nonlinear optimization problem:

min x1 + x2
2

subject to x1 − x2 = 5

x2
1 + 9x2

2 ≤ 36

There are many cases to consider. Make sure that you don’t miss any.

After solving the problem analytically, code the problem on NEOS solver, using any solver of your
choice.

Solutions:

Solution approach is similar to Problem 4.
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Problem 6 — Convexity Range

For the following function, find the set of values for β such that the function is convex.

f (x, y, z) = x2 + y2 + 5z2 − 2xz + 2βxy + 4yz

Solutions:

After representing f (x, y, z) in a quadratic, symmetric form, find the principal minors. To guaran-
tee the convexity of f (x, y, z), all the principal minors should be non-negative.

f (x, y, z) can be written as:

[
x y z

]  1 β −1
β 1 2
−1 2 5

x
y
z

 =
[
x y z

]
Q

x
y
z

 .

Evaluating the principal minors of Q, we obtain the following conditions:

1− β2 ≥ 0

−5β2 − 4β ≥ 0.

Combining the above conditions on β, the range of β that guarantees convexity of f is:

−4
5
≤ β ≤ 0.
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Problem 7 — CVX Programming

The objective of this problem is to get you started with CVX—the convex optimization solver on MAT-
LAB. Do the following:

1. Watch this CVX introductory video: https://www.youtube.com/watch?v=N2b_B4TNfUM

2. Download and install CVX on your machine: http://cvxr.com/cvx/download/

3. Read the first few pages of the CVX User’s Guide: http://web.cvxr.com/cvx/doc/

4. Solve Problems 4 and 5 using CVX.

Solutions:

% Problem 4

cvx_begin

variable x1

variable x2

minimize( x1^2+2*x2^2)

subject to

x1+x2-3>=0

x2-x1^2-1 >= 0

cvx_end

x1

x2

Status: Solved

Optimal value (cvx_optval): +9

x1 =

1.0000

x2 =

2.0000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear all

% Problem 5

cvx_begin

variable x1

variable x2

minimize( x1+x2^2)

subject to

x1-x2-5==0

x1^2+9*x2^2-36 <= 0

cvx_end

x1

x2

Status: Solved

Optimal value (cvx_optval): +4.75

x1 =

8

https://www.youtube.com/watch?v=N2b_B4TNfUM
http://cvxr.com/cvx/download/
http://web.cvxr.com/cvx/doc/


4.5000

x2 =

-0.5000
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Problem 8 — Solving LMIs using CVX

Using CVX, solve the following LMI for P:

A>P + PA < 0
B>P + PB < 0

P = P> > 0.1I, where:

A =

[
−3 1
0 −1

]
B =

[
−2 0
1 −1

]

What happens if you try to solve the same LMI when B =

[
−2 3
1 −1

]
?

Justify the results.

Solutions:

For the first part of the problem, this code can be used to generate the answer. Note that the objec-
tive cannot be empty. Hence, a constant in the objective function (which is a convex cost function)
suffices.

clc

clear all

% Problem 8-a

A=[-3 1;0 -1];

B=[-2 0; 1 -1];

n=length(A);

cvx_begin

variable P(n,n) symmetric

minimize(1)

subject to

A’*P + P*A < 0

B’*P + P*B < 0

P > 0.1*eye(n)

cvx_end

% Solution:

Status: Solved

Optimal value (cvx_optval): +1

P =

4.1413 4.8195

4.8195 8.5548

When B =

[
−2 3
1 −1

]
, the solution won’t converge, since B has a positive eigenvalue. Recall the

sufficiency condition on the existence of a solution to the Lyapunov equation...

clc

clear all

% Problem 8-b

A=[-3 1;0 -1];

B=[-2 3; 1 -1];
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cvx_begin

variable P(2,2) symmetric

minimize(norm(P))

subject to

A’*P + P*A < 0

B’*P + P*B < 0

P > 0.1*eye(2)

cvx_end

P

eig(B)

Status: Infeasible

Optimal value (cvx_optval): +Inf

P =

NaN NaN

NaN NaN

ans =

-3.3028

0.3028 % a +ve evalue
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