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Problem 1 — Cost of an Infinite Horizon LQR

Prove that the total cost of the CT, LTI infinite horizon LQR problem, given by:

minimize J =
∫ ∞

0
‖y(t)‖2 dt

subject to ẋ(t) = Ax(t)
y(t) = Cx(t)

is J = x>0 Px0 where P is the solution to the steady-state Ricatti equation, given in Module 05, and x(0)
is the vector of initial state conditions.

Hint: Write the cost function as a quadratic cost function in terms of x(t) and then relate to CARE.
Response. We can write

min J =
∞∫

0

y(t)Ty(t)dt =
∞∫

0

x(t)TCTCx(t)dt (1a)

Subject to ẋ(t) = Ax(t). (1b)

Problem (1) is an LQR with Q = 2CCT and B = 0, R = I of appropriate sizes. The Ricatti equation is :

Q + PA + AT P = 0. (1c)

If we solve (1c) with Q = CCT then our optimal solution is given by J = 1
2 xT

0 Px0. But now since we
are solving (1c) with Q = 2CCT , then the optimal cost will be J = xT

0 Px0.
The proof that J = 1

2 xT
0 Px0 for infinite horizon LQR is given in the linked PDF in problem 3 (http:

//goo.gl/CUIwPl).

Problem 2 — Infinite Horizon LQR

Compute J =
∫ ∞

0 x>
[

10 6
6 4

]
x dt, given that the system dynamics are given by:

ẋ(t) =
[
−3 −1
2 0

]
x(t),

where x(0) =
[
0 1

]>. You are supposed to solve the problem analytically using two different meth-
ods of your choice (CARE is one of them). You are not supposed to use any programming tool. You
should also use the result from Problem 1.

Verify your solutions using MATLAB. Show your code.
Response. Method one is solving the differential equation ẋ(t) = Ax explicitly and replacing it into the
integral. To do that, we need to be able to evaluate eAt which we find by calculating the eigenvalues of
A and writing A in the diagonal form. For the sake of brevity, only the diagonal form of A is presented:

A =

[
1 1
−2 −1

] [
−1 0
0 −2

] [
−1 −1
2 1

]
. (2)
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Now we can obtain x(t) = eA(t−t0)x(t0):

x(t) = eA(t−t0)x(t0) =

[
1 1
−2 −1

] [
e−(t−t0) 0

0 e−2(t−t0)

] [
−1 −1
2 1

] [
0
1

]
(3)

x(t)T
[

10 6
6 4

]
x(t) = 2e−2(t−t0) + 2e−4(t−t0). (4)

We use (4) to calculate the integral, while setting t0 = 0:

J =
∞∫

0

x(t)T
[

10 6
6 4

]
x(t)dt =

∞∫
0

2e−2(t−t0) + 2e−4(t−t0)dt = e2t0 +
1
2

e4t0 =
3
2

. (5)

Method two is using CARE with Q = 2
[

10 6
6 4

]
=

[
20 12
12 8

]
, R = I2, A =

[
−3 −1
2 0

]
and B =

[
0
0

]
.

Let P =

[
P11 P12
P12 P22

]
be the symmetric positive semidefinite variable:

Q + PA + AT P = 0

⇒
[

20 12
12 8

]
+

[
P11 P12
P12 P22

] [
−3 −1
2 0

]
+

[
−3 2
−1 0

] [
P11 P12
P12 P22

]
=

[
0 0
0 0

]
[
−6P11 + 4P12 + 20 −2P11 + 12
−2P11 + 12 −2P12 + 8

]
=

[
0 0
0 0

]
⇒ P11 = 6, P12 = 4, P22 = 3. (6)

Hence, P =

[
6 4
4 3

]
and the optimal cost is 1

2 xT
0 Px0 = 1

2
[
0 1

] [6 4
4 3

] [
0
1

]
= 3

2 . The matlab code

follows below:

A=[−3 −1; 2 0 ] ;
B = [ 0 ; 0 ] ;
Q=[20 1 2 ; 12 8 ] ;
R=1;
[K, P , e ]= l q r (A, B ,Q, R ) ;

x0 = [ 0 ; 1 ] ;
optCost =0.5∗ x0 . ’ ∗P∗x0 ;
%
% P =
%
% 6 4
% 4 3

% optCost =
%
% 1.5000

Problem 3 — Two Point Boundary Value Problem

In this problem, we will learn about optimal control solutions for a two point boundary value prob-
lem (TPBVP) — an optimal control problem where terminal state conditions are pre-specified. You
should do research on how to solve TPBVP with fixed final and initial states.

For example, you might find Example 6-1 in http://goo.gl/CUIwPl useful, as it includes an exam-
ple on solving TPBVP. Also, read the LQR Variational Solution section in the linked PDF.
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After reading the linked PDF and going through the example, find the optimal control trajectory,
u∗(t) = [u∗1(t) u∗2(t)]

>, that minimizes this performance index:

J =
1
2

∫ 1

0
‖u(t)‖2,

subject to:

ẋ =

[
0 0
0 −2

]
x +

[
1/2 1/2
−1/2 1/2

]
u, x(0) =

[
1/2
−1/2

]
, x(1) =

[
0
0

]
.

Using MATLAB, plot your optimal control, performance index, J, and the corresponding state-trajectory.

Response. We use p(t) =
[

p1(t)
p2(t)

]
and construct the Hamiltonian:

H(x, u, p, t) =
1
2

uTu +
[
p1(t) p2(t)

] [ [0 0
0 −2

] [
x1(t)
x2(t)

]
+

[ 1
2

1
2

− 1
2

1
2

] [
u1(t)
u2(t)

] ]
H(x, u, p, t) =

1
2

uTu− 2p2(t)x2(t) + (
1
2

p1(t)−
1
2

p2(t))u1(t) + (
1
2

p1(t) +
1
2

p2(t))u2(t). (7)

Next we use the condition that ṗ(t) = −( ∂H
∂x )

T :

ṗ(t) =
[

ṗ1(t)
ṗ2(t)

]
= −(∂H

∂x
)T = −

[
0

−2p2(t)

]
=

[
0

2p2(t)

]
. (8)

Two differential equations are achieved in (8):

ṗ1(t) = 0⇒ p1(t) = c1 constant. (9)

ṗ2(t) = 2p2(t)⇒
ṗ2(t)
p2(t)

= 2→
∫ dp2

p2
=
∫

2dt⇒ ln|p2| = 2t + Const.⇒ p2(t) = Ke2t (10)

where c1 and K are constants to be determined later. Next, we obtain the optimal control by setting
Hu = 0 as follows:

Hu = uT +
[ 1

2 p1 − 1
2 p2

1
2 p1 +

1
2 p2
]
=
[
0 0

]
⇒ u1 = −1

2
(p1 − p2) and u2 = −1

2
(p1 + p2). (11)

We substitute (9) and (10) into (11) to obtain the optimal control:

u1 = − c1

2
+

K
2

e2t (12)

u2 = − c1

2
− K

2
e2t. (13)

Next step entails using the state equations and the initial values to obtain the constants c1 and K:

ẋ1(t) =
1
2

u1(t) +
1
2

u2(t) = −
c1

2
⇒ x1(t) = −

c1

2
t + c2. (14)

ẋ2(t) = −2x2(t)−
1
2

u1(t) +
1
2

u2(t) = −2x2(t)−
1
2

Ke2t ⇒ x2(t) = A1e−2t − K
8

e2t (15)

where c2 and A1 are constants to be determined using the initial and terminal conditions. Note that
the differential equation in (15) is solved by finding a homogenous as well as a particular solution. As
mentioned earlier, we use the initial and terminal conditions to find constants c1, c2, K and A1:

x1(0) = c2 =
1
2

(16)

x1(1) = −
c1

2
+

1
2
= 0⇒ c1 = 1 (17)

x2(0) = A1 −
K
8
= −1

2
(18)

x2(1) = A1e−2 − K
8

e2 = 0⇒ A1 = −0.5093, K = −0.0746. (19)
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Substituting these values into (12) and (13) will yield the optimal control inputs:

u1(t) = −
1
2
− 0.0746

2
e2t (20)

u2(t) = −
1
2
+

0.0746
2

e2t (21)

Also J(t) which is the performance index at any time t is calculated by:

J(t) =
1
2

t∫
0

||u(t′)||2dt′ =
t
2
+ (6.9565e4t − 6.9565)10−4

.
The optimal control inputs are shown in Fig. 1, performance index is depcited in Fig. 2 and the

optimal state trajectories is plotted in Fig. 3.
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Figure 1: Optimal control inputs for problem 3.
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Figure 2: Performance index J for problem 3.
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Figure 3: State trajectroy for problem 3.

Problem 4 — Optimal Control for a Nonlinear System

Using the HJB-equation, and a candidate quadratic function V(t, x), find the optimal control action
that minimizes this performance index:

J = (x(1))2 +
∫ 1

0
x2(t)u2(t) dt,

where the dynamics of the nonlinear system are given by:

ẋ(t) = x(t)u(t), x(0) = 1.

You’ll have to follow the following steps:

1. Construct the Hamiltonian.

2. Obtain the optimal control.

3. Apply property 1 of any value function, i.e., ∂V
∂x = λ∗(x, t).

4. Substitute this optimal control and multiplier into the HJB equation.

5. Formulate a candidate quadratic value function.

6. Use this candidate in the HJB and obtain an ODE that relates to the value function.

7. Obtain the optimal control.

8. Finally, plot the optimal control, cost function, and the state trajectory (you can either use the ode
solver on MATLAB).

Response.

1. H(x, u, λ, t) = x2u2 + λxu.

2. ∂H
∂u = 0⇒ 2x2u + λx = 0⇒ u∗ = − λ

2x .

3. ∂V
∂x = λ∗(x, t).
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4. minu H(x, u, λ∗, t) = x2(− λ∗
2x )

2 + λ∗x(− λ∗
2x ) = −

λ∗2
4 = − ∂V

∂t .

5. V(x, t) = P(t)x2 ⇒ ∂V
∂x = 2P(t)x and ∂V

∂t = Ṗ(t)x2.

6. −Ṗ(t)x2 = − ∂V
∂t = minu H(x, u, λ∗, t) = − λ∗2

4 and λ∗(x, t) = ∂V
∂x = 2P(t)x. Therefore we obtain:

Ṗ(t)x2 =
4P2(t)x2

4
⇒ Ṗ(t)x2 = P2(t)x2 ⇒ Ṗ(t) = P2(t). (22)

Notice that also since V(x, 1) = P(1)x(1)2 = x(1)2, we need to have P(1) = 1.

7. We solve the ODE in (22):

dP
dt

= P2 ⇒ dP
P2 = dt⇒

∫ 1
P2 dP =

∫
dt⇒ − 1

P(t)
= t + C ⇒ P(t) = − 1

t + C
(23)

where C is a constant that needs to be determined. Using P(1) = 1 ⇒ − 1
1+C = 1 ⇒ C = −2.

Therefore P(t) = − 1
t−2 . Replace P(t) in V(x, t) = P(t)x2 to obtain

V(x, t) = − 1
t− 2

x2(t),

λ = − 2
t− 2

x(t),

and

u = − λ

2x
=
− 2

t−2 x(t)
2x(t)

= − 1
t− 2

.

Finally, we use the state equation to solve for x(t):

ẋ(t) = x(t)u(t) = − x(t)
t− 2

⇒ ẋ
x
= − 1

t− 2
⇒ ln|x(t)| = −ln|2− t|+ Const→ x(t) =

K
2− t

(24)

where K is a constant that needs to be determined using x(0). Also notice that, the differential
equation has a solution since t ∈ [0, 1] and hence t < 2. Using the initial conditions

x(0) = 1⇒ K
2− 0

= 1⇒ K = 2.

This yields the explicit equation for the state trajectory:

x(t) = − 2
t− 2

.

At this point we have everything we need to plot the results.

8. The plots are given in Fig. 4

Problem 5 — Discrete LQR Solution + Lagrangian

The discrete dynamics of an LTI system is given by:

xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1.

Consider the optimal control problem of finding optimal control sequence, u∗0 , . . . , u∗N−1, given:

• Specific initial and final conditions: x0 and xN are fixed, and

• Cost index: J =
1
2

N−1

∑
k=0

u>k Ruk
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Figure 4: Optimal control, cost function and the state trajectory for problem 4.

The objective of this problem is to transform the optimal control problem to a quadratic, static opti-
mization problem subject to linear equality constraints.

Answer the following questions:

1. Write the cost function J as a quadratic cost function in u =
[
u0 u1 . . . uN−1

]>, where you
should determine the quadratic cost-matrix—it should be diagonal.

2. Given an initial and final fixed states, write the dynamics of the system as Auu = bu, where Au
and bu should be determined in terms of A, B, x0, xN−1.

3. Formulate the optimal control problem as a quadratic program with linear equality constraints.

4. Construct the Lagrangian of the transformed optimization problem.

5. What is the optimal u∗? You have to solve a KKT-like problem for multipliers and control.

Response. Let u =
[
uT

0 uT
1 . . . uT

N−1
]T .

1. We can write J = 1
2 uTRu where R =


Rk 0 . . . 0
0 Rk . . . 0
...

...
. . .

...
0 0 . . . Rk

 which is a block diagonal matrix.
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2.

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1 = A(Ax0 + Bu0) + Bu1 = A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2 = A(A2x0 + ABu0 + Bu1) + Bu2 = A3x0 + A2Bu0 + ABu1 + Bu2

...

xN = AN x0 + AN−1Bu0 + AN−2Bu1 + . . . + ABuN−2 + BuN−1

Which yields to the following system of equations:[
AN−1B, AN−2B, . . . , AB, B

]
u = xN − AN x0. (25)

Therefore we will have Au =
[
AN−1B, AN−2B, . . . , AB, B

]
and bu = xN − AN x0.

3. The new formulation will be a linear constrained quadratic program:

min
u

1
2

uTRu (26)

subject to Auu = bu (27)

For ease of representation, let Au ∈ Rm×n, bu ∈ Rm, u ∈ Rn.

4. Introduce λ ∈ Rm. The Lagrangian is then :

L(u, λ) =
1
2

uTRu + λT(Auu− bu). (28)

5. We start by writing out the KKT conditions:

∇uL(u, λ) = Ru + AT
u λ∗ = 0⇒ u∗ = −R−1(AT

u )λ
∗. (29)

Notice that R is a square matrix and its inverse hopefully exists (specially since its block-diagonal).
Next, we find the λ∗ by substituting (29) into (27):

Auu = bu = Au(−R−1)(AT
u )λ

∗ = bu ⇒ λ∗ =
[
Au(−R−1)(AT

u )
]−1bu (30)

Here, also notice that
[
Au(−R−1)(AT

u )] ∈ Rm×m and its inverse potentially exists. Finally plug-
ging in (30) into (29) yields the optimal u∗:

u∗ = −R−1(AT
u )λ

∗ = −R−1(AT
u )
[
Au(−R−1)(AT

u )
]−1bu. (31)

Problem 6 — Principle of Optimality and DP

Consider the following discrete-time LQR problem:

minimize J = (x2 − 10)2 +
1
2

1

∑
k=0

(x2
k + u2

k)

subject to xk+1 = 2xk − 3uk

x(0) = 4.

The final state can be anything, i.e., it is free, not fixed. The objective of this problem is to solve the
above optimal control problem by invoking the Principle of Optimality and Dynamic Programming,
similar to the example on Slide 13 of Module 05.
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Obtain the optimal control sequence and the corresponding state trajectories.
Response. We start by calculating J∗2 (x2) = (x2 − 10)2 and knowing that x2 = 2x1 − 3u1:

J∗1 (x1) = min
u1
{1

2
(x2

1 + u2
1) + (x2 − 10)2} = min

u1
{1

2
(x2

1 + u2
1) + (2x1 − 3u1 − 10)2} (32)

Setting ∂J1
∂u1

= 0 yields:

∂J1(x1)

∂u1
= u1 − 6(2x1 − 3u1 − 10)⇒ u∗1 =

−60 + 12x1

19
. (33)

Plugging in (33) into (32) results in:

J∗1 (x1) =
27
38

x2
1 −

40
19

x1 +
100
19

. (34)

Next we obtain

J∗0 (x0) = min
u0
{1

2
x2

0 +
1
2

u2
0 + J∗1 (x1)} = min

u0
{1

2
x2

0 +
1
2

u2
0 +

27
38

x2
1 −

40
19

x1 +
100
19
} (35)

for which we replace x1 with its equivalent x1 = 2x0 − 3u0 to obtain:

J∗0 (x0) = min
u0
{1

2
x2

0 +
1
2

u2
0 +

27
38

(2x0 − 3u0)
2 − 40

19
(2x0 − 3u0) +

100
19
}. (36)

To find optimal u∗0 we need to take the derivative of (36) and set it equal to zero:

∂J0(x0)

u0
= u0 − 3× 2× 27

38
(2x0 − 3u0)−

40
19

(−3) = 0 (37)

resulting in u∗0 = 8.5263x0−6.3158
13.7895 . The problem gives x0 = 4 which we substitute to obtain u0 = 2.0153.

Then, x1 = 2x0 − 3u0 = 2× 4− 3× 2.0153 = 1.9541. Using (33), u∗1 = −60+12×x1
19 = −1.9237. Finally

x2 = 2x1 − 3u1 = 9.6793.
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