THE UNIVERSITY OF TEXAS AT SAN ANTONIO	HOMEWORK # 5 SOLUTIONS
EE 3413	Ahmad F. Taha
ANALYSIS AND DESIGN OF CONTROL SYSTEMS	February 29, 2016

The objective of this homework is to test your understanding of the content of Module 5. Due date of the homework is: **Thursday, February 25th, 2016**, **@ noon**.

You have to upload a scanned version of your solutions on Blackboard. If you don't have a scanner around you, you can use Cam Scanner—a mobile app that scans images in a neat way, as if they're scanned through a copier. Here's the link for Cam Scanner: https://www.camscanner.com/user/download.

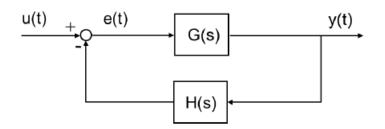


Figure 1: Feedback control system.

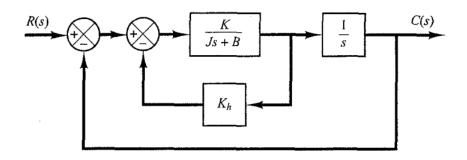


Figure 2: Servo system.

1. For a standard second order system given by this transfer function:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2},$$

where $\zeta = 0.6$ and $\omega_n = 5$. Answer the following questions.

- (a) Find the: rise time, peak time, maximum overshoot, and settling time (the two criterion we discussed in class) if the system input is a unit step function.
- (b) Show a plot of how t_r , t_p , and M_p all vary with respect to different values of ζ and ω_n . Ideally, you should do that on MATLAB.

Solutions (from Ogata):

From the given values of ζ and ω_n , we obtain $\omega_d = \omega_n \sqrt{1 - \zeta^2} = 4$ and $\sigma = \zeta \omega_n = 3$. *Rise time* t_r : The rise time is

$$t_r = \frac{\pi - \beta}{\omega_d} = \frac{3.14 - \beta}{4}$$

where β is given by

$$\beta = \tan^{-1}\frac{\omega_d}{\sigma} = \tan^{-1}\frac{4}{3} = 0.93 \text{ rad}$$

The rise time t_r is thus

$$t_r = \frac{3.14 - 0.93}{4} = 0.55 \text{ sec}$$

Peak time t_p : The peak time is

$$t_p = \frac{\pi}{\omega_d} = \frac{3.14}{4} = 0.785 \text{ sec}$$

Maximum overshoot M_p : The maximum overshoot is

$$M_p = e^{-(\sigma/\omega_d)\pi} = e^{-(3/4) \times 3.14} = 0.095$$

The maximum percent overshoot is thus 9.5%.

Settling time t_s : For the 2% criterion, the settling time is

$$t_s = \frac{4}{\sigma} = \frac{4}{3} = 1.33 \text{ sec}$$

For the 5% criterion,

$$t_s = \frac{3}{\sigma} = \frac{3}{3} = 1 \sec \theta$$

- 2. For the system shown in Figure 1, assume that $G(s) = \frac{-K}{s+10}$ and H(s) = 1. Answer the following questions:
 - (a) Find the closed-loop transfer function Y(s)/U(s) and its pole (or poles).
 - (b) What is the range of the constant *K* so that the closed-loop system is stable?
 - (c) Suppose K = 5. What is the time constant of the closed-loop transfer function (as a first order system)?
 - (d) What is the steady-state tracking error $e(\infty) = u(\infty) y(\infty)$ under the input a unit step input u(t)?

Solutions (from Ogata):

- (a) $\frac{Y(s)}{U(s)} = -\frac{K}{s (K 10)}$
- (b) The pole of the system is p = K 10. Hence, we need p < 0, then K < 10.
- (c) For K = 5, the transfer function can be written as:

$$\frac{-1}{0.2s+1}.$$

Hence, the time-constant is T = 0.2.

(d) Under a unit step input, the steady state error $e(\infty) = u(\infty) - y(\infty) = 1 - (-1) = 2$.

- 3. For the system given in Figure 2, answer the following questions.
 - (a) Obtain the transfer function C(s)/R(s) in terms of constants K, J, B, K_h , and then write this system as a standard second order system as the transfer function given in Problem 1.
 - (b) Determine the values of gain *K* and K_h so that M_p (the maximum overshoot) for a unit step response is equal to 0.2, and t_p (the peak time) is 1 second. Assume that J = 1 and B = 1.
 - (c) With the above, now-obtained values for K and K_h , obtain the rise-time and settling time.

Solutions (from Ogata):

- (a) $\frac{C(s)}{R(s)} = \frac{K}{Js^2 + (B + KK_h)s + K}$.
- (b) The damping coefficient is $\zeta = \frac{B + KK_h}{2\sqrt{KJ}}$; natural frequency is $\omega_n = 2\sqrt{KJ}$. The maximum overshoot M_p is given by

$$M_p = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi}$$

This value must be 0.2. Thus,

$$e^{-(\zeta/\sqrt{1-\zeta^2})\pi} = 0.2$$

or

$$\frac{\zeta\pi}{\sqrt{1-\zeta^2}} = 1.61$$

which yields

$$\zeta = 0.456$$

The peak time t_p is specified as 1 sec; therefore, from Equation (5–20),

$$t_p = \frac{\pi}{\omega_d} = 1$$

or

$$\omega_d = 3.14$$

Since ζ is 0.456, ω_n is

$$\omega_n = \frac{\omega_d}{\sqrt{1-\zeta^2}} = 3.53$$

Since the natural frequency ω_n is equal to $\sqrt{K/J}$,

$$K = J\omega_n^2 = \omega_n^2 = 12.5 \text{ N-m}$$

Then K_h is, from Equation (5–25),

$$K_h = \frac{2\sqrt{KJ}\zeta - B}{K} = \frac{2\sqrt{K}\zeta - 1}{K} = 0.178 \text{ sec}$$

Rise time t_r : From Equation (5–19), the rise time t_r is

Rise time t_r: From Equation (5–19), the rise time t_r is

$$t_r = \frac{\pi - \beta}{\omega_d}$$

where

$$\beta = \tan^{-1} \frac{\omega_d}{\sigma} = \tan^{-1} 1.95 = 1.10$$

Thus, t_r is

$$t_r = 0.65 \, \text{sec}$$

Settling time t_s: For the 2% criterion,

$$t_s = \frac{4}{\sigma} = 2.48 \sec \theta$$

For the 5% criterion,

$$t_s = \frac{3}{\sigma} = 1.86 \text{ sec}$$

(c)