READ Homework Instructions:

- 1. Type your solutions. This homework is mainly a programming assignment.
- 2. This is a very long problem set. You have to start early and ask questions when (if) in doubt.
- 3. **Due date:** Tuesday, October, 27th, @ 5:00pm on Blackboard, **AND** drop off a copy of your solutions (slip it under the office door if I'm away).
- 4. **Collaboration policy:** you cannot collaborate with anyone on this homework. It's mainly a programming exercise; you have to write your own codes.
- 5. Solutions that are unclear won't be graded.
- 6. Before you start with this homework assignment, make sure that you have grasped the content of Module 06.
- 7. This homework weighs twice as much a typical homework, as it's a bit more time consuming and you're given more time to complete it.
- 8. You should include the codes in the submitted PDF as well as commented m-files, to be uploaded on Blackboard.

The objective of this homework assignment is to teach you basic implementation of a model predictive control (MPC) engine for a nonlinear system. That is, using **real-time measurements (outputs) from the nonlinear dynamics of a system**, the objective is to design an MPC that uses the **linearized**, discretized version of the nonlinear system (read this sentence again and again).

This assignment is mainly a programming assignment. Thus, you will have to present well-commented codes. You are also required to upload your codes to Blackboard, in addition to a ReadMe.txt file that explains the structure of your files. Poorly developed codes **WILL** be *poorly graded* — whatever that means!

The θ – *R Robotic Manipulator*

In this problem set, the dynamics of a nonlinear dynamical system — the θ – R robotic manipulator — are summarized from [1]. The below figure shows a representation of the manipulator with a simplistic lumped mass representation of the system. The dynamics of the manipulator are given as

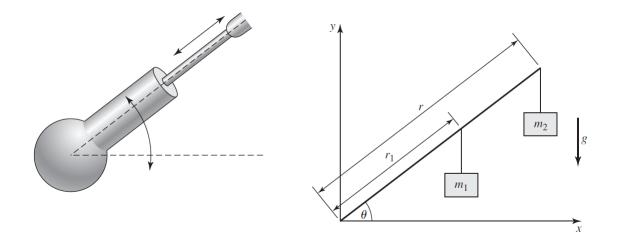


Figure 1: Figure to the left shows the θ – R manipulator, whereas the figure to the right illustrate the lumped mass representation; figures are taken from [1]. For more on the derivation of the state-space representation of this dynamical system, the reader is referred to [1].

follows:

$$\dot{x} = f(x, u) = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_4 \\ -2m_2x_2x_3x_4 - g(m_1r_1 + m_2x_2)\cos(x_1) + u_1 \\ m_1r_1^2 + m_2x_2^2 \\ x_3^2x_2 - g\sin(x_1) + \frac{u_2}{m_2} \end{bmatrix},$$
(1)

where:

- $x_1 = \theta$ is the angle (see Figure 1);
- $x_2 = r$ is the varying radius (see Figure 1);
- $x_3 = \dot{\theta}$ is the derivative of θ ;
- $x_4 = \dot{r}$ is the derivative of x_2 ;
- $u_1 = T_{\theta}$ is the first control which is the torque;
- $u_2 = F_r$ is the second control input which is the translational force.

One of this assignment's objective is to compute optimal control trajectories for u_1 and u_2 such that a certain cost function is minimized, system dynamics are satisfied, and the controls are bounded. The problems in this assignment are all related.

Problem 1 — Linearization and System Properties

Answer the following questions:

- 1. The following is given for this problem and subsequent ones:
 - (a) $m_1 = 10, m_2 = 3, r_1 = 1, g = 9.81$
 - (b) Equilibrium point (that is generated by solving $\dot{x} = 0$) is: $x_e^{\top} = \begin{bmatrix} \frac{\pi}{4} & 2 & 0 & 0 \end{bmatrix}^{\top}$.

Given the above, obtain $u_e = \begin{bmatrix} u_{e_1} \\ u_{e_2} \end{bmatrix}$ — the equilibrium control. Recall that $\dot{x} = f(x_e, u_e) = 0$. You can do this analytically or on MATLAB. The command solve can be useful.

2. For x_e and the computed u_e , obtain a linearized version of the nonlinear dynamics given in (1), i.e., find matrices *A* and *B*. Your dynamics should have the following form:

$$\Delta \dot{x}(t) = A \Delta x(t) + B \Delta u(t), \ \Delta x(t) = x(t) - x_e, \Delta u(t) = u(t) - u_e.$$

You can do this analytically or on MATLAB (which is preferred). The command jacob and subs can be useful. With that in mind, we will allow ourselves to abuse this notation and use $\dot{x} = Ax + Bu$ instead.

- 3. Assume that the output of the linearized system is simply x_1 and x_2 (**not** $x_1 + x_2$). What is your *C*-matrix?
- 4. Write a MATLAB function that takes **ANY** *A*, *B*, *C* as inputs and generates a sequence of 1's and 0's that answers the following questions:
 - (a) Is the system asymptotically stable?
 - (b) Is the system controllable?
 - (c) Is the system observable?
 - (d) Is the system stabilizable?
 - (e) Is the system detectable?

Your function should work with any linearized system, i.e., for any dimensions and any statespace matrices. You should use the PBH-test to get some of the answers above for your m-file. If the answers to the above five questions are all "Yes", the output should be an array of 1's (answer = [1 1 1 1 1]). If the system satisfies all the properties besides detectability, your output should be [1 1 1 1 0].

Problem 2 — Design of LSF and Observer Matrix Gains

- 1. If the linearized dynamical system is stabilizable, design a linear state-feedback matrix gain *K* such that the eigenvalues of the closed-loop system are located at: [-2 3 4 5].
- 2. If the linearized dynamical system is detectable, design a linear observer gain *L* such that the eigenvalues of the closed-loop system are located at: [-2 3 4 5].

Problem 3 — Dynamical Simulation Using an ODE Solver, Control & Estimation

You will now simulate the performance of your system given a control law.

- 1. Develop a MATLAB file that depicts the trajectory or the behavior of the closed-loop system comprised of the state-feedback **controller driving the nonlinear model of the robot for different initial conditions. You will have to follow this procedure:**
 - (a) Your given data should be: matrices A, B, C, K, L, vectors x_e, u_e, x_0 , and given system constants (m_1, m_2, g, r_1) . You should have these quantities in the beginning of your m-file.
 - (b) Read about the ode45 solver on MATLAB, and know how to simulate the dynamics of any nonlinear system. Here's a Mathworks link: http://www.mathworks.com/help/matlab/ ref/ode45.html?refresh=true.
 - (c) Note that your control law is given by: $\Delta u = -K\Delta x$, hence: $u = -K\Delta x + u_e$
 - (d) Write a MATLAB function that represents the nonlinear dynamics of the manipulator. Name the function 'thetaRdynamics.m'. If your control is constant, the function should look like that:

```
function [dx] = thetaRdynamics(t,x)
% constants here
% matrix gains here
% constant vectors here
% Deltax = x - xe;
% Your control law here: u=-K Deltax + ue
% Your nonlinear dynamics here: dx = f(x,u)
end
```

- (e) Specify your time-span to be: tspan=0:0.01:5 and call the ode45 solver when your initial plant conditions are all zero.
- (f) Plot the states trajectories (x1, x2, x3, x4) in addition to the two controls (u1, u2) for zero initial conditions. Your plots should have lables, titles, legends. Ugly plots often receive ugly reviews.
- (g) Repeat (f) when you change your initial conditions. Start from random ones in this case.
- (h) Using the computed matrix gain *L*, simulate the observer of the nonlinearized dynamical system, that is:

$$\dot{x} = A\hat{x} + Bu + L(y - \hat{y}).$$

To do that, you will have to write a new m-file for the nonlinear dynamics, i.e., you'll have to write a file which you can call thetaRdynamics_observer(t,x) (the size of x here is 8, as it includes states of the nonlinear dynamics and the estimator) that dynamically simulates the observer and then uses it for the ode45 solver.

- i. Start from the following initial conditions: $x_0^{\top} = [0.5\pi \ 1.5 \ 0 \ 0]$ and zero estimator conditions.
- ii. Illustrate through your plots that the estimator's states are approaching the actual states, generated from the ode45 solver.
- iii. Repeat this experiment for different initial conditions of your choice.

Problem 4 — Unconstrained MPC for the Nonlinear System

In this problem, you will design an MPC for the nonlinear system, using the linearized dynamics of the system. Read the instructions carefully.

- 1. First, write a MATLAB function that takes the following inputs: matrices A, B, C of a CT LTI system, N_p (prediction horizon, which we assume to be equal to the control horizon), and h (the sampling period needed for discretization). This function should:
 - (a) Discretize the continuous system.
 - (b) Construct the augmented MPC dynamics (from Module 6).
 - (c) Compute matrices *W*, *Z* (Module 6).
 - (d) This function should be something like this: function [W,Z,Ca,PhiA,GammaA] = MPCMATs(A,B,C,Np,h).
 - (e) Your function should work for any MIMO dynamical system of all sizes.
- 2. Using MPCMATs function, write another function that finds the optimal control ΔU :
 - (a) This function should be something like this:function DU = optimizer(xa,A,B,C,R,Q,r,Np,h)
 - (b) This function obviously calls MPCMATs to generate Z, W
 - (c) Matrices *Q*, *R* are weight matrices discussed in Module 6, *x*_a is the initial vector for the MPC augmented system, and *r* is the reference signal.
 - (d) The output of this function is the optimal control for a predicted horizon.
 - (e) You have basically designed an MPC now without constraints on the control or states.
- 3. You will have to simulate the unconstrained MPC control law **on the nonlinear continuous model of the system.** Do the following:
 - (a) The following is given:

$$N_p = 40, h = 0.101, x_0^{+} = \begin{bmatrix} \pi/8 & 1 & 0 & 0 \end{bmatrix}, y_0 = Cx_0, u_0 = 0, T_{final} = 20$$

(b) The weight matrices and reference signals are:

$$R = \text{diag}(0.1, 0.1), Q = \text{diag}(4, 0.1), r = \begin{vmatrix} -0.1 \\ -0.2 \end{vmatrix}$$

Of course, the given reference signals and weight matrices will have much bigger sizes as you should do consider the predicted horizon, and hence the given costs are for only one time-step. The MATLAB commands kron and repmat should be helpful in generating the actual Q, R and r — quantities that will be used for the optimizer function.

(c) Your simulation file should have the following structure (this is only a pseudo-code):

```
% All the constants
% All the matrices and initial conditions
% UU(:,1)=u0;
% for k=1:1:(Tfinal/h)
% tspan(:,k)=(k-1)*h:0.001:k*h;
% tt(k)=tspan(1,k);
% [t,X] = ode45(@thetaRdynamics,[(k-1)*h k*h],XX(:,k),options,ue+UU(:,k));
% Find x_a for the new iteration
% Find DU optimal for the new horizon using the optimizer function
% Extract UU (or u(k))
% end
```

- (d) Plot the states trajectories (x_1, x_2, x_3, x_4) in addition to the two controls (u_1, u_2) . Your plots should have lables, titles, legends. Again, nasty plots get nasty reviews ;).
- (e) Change your initial conditions and *R*, *Q*, *r* values and explain the corresponding outputs and plots.

Problem 5 — Constrained MPC for the Nonlinear System

For this problem, we will resolve Problem 4 (with the exact same parameters, unless otherwise specified), but with constraints on one of the state variables and control inputs.

- 1. In this problem, you will us the Matlab function quadprog to solve the constrained MPC problem. First, teach yourself how quadprog works through any quadratic optimization example.
- 2. Assume that we require that the variable radius r (or $y = x_2$) to be bounded as follows:

$$1 \le x \le 2 \implies 1 \le \Delta x_2 + x_{e_2} \le 2 \implies 1 - x_{e_2} \le \Delta x_2 = \Delta y \le 2 - x_{e_2}$$

Start by formulating the bounded output problem in terms of ΔU , similar to the technique we used in class.

3. Also, we will assume that controls are both bounded as follows:

$$0 \leq U(k) \leq 200 \ \forall k,$$

i.e., the torque and force can only be nonnegative quantities smaller or equal to 200 in magnitude.

- 4. What you have to change in this problem (from Problem 4) is the optimizer function (call the new function optimizer_con.m), as this function computes the optimal ΔU(k). In Problem 4, U(k) and Y(k) were both unconstrained. Using quadprog, update your optimizer function such that the bounds mentioned above are reflected in the MPC optimization. You should be very careful when doing so, as we are operating on the equilibrium, linearized representation of the system.
- 5. Your simulation file for the constrained MPC should have the following updated structure:

```
% All the constants
% All the matrices and initial conditions
% UU(:,1)=u0;
% for k=1:1:(Tfinal/h)
% tspan(:,k)=(k-1)*h:0.001:k*h;
% tt(k)=tspan(1,k);
% [t,X] = ode45(@thetaRdynamics,[(k-1)*h k*h],XX(:,k),options,ue+UU(:,k));
% Find x_a for the new iteration
% Find DU optimal for the new horizon using THE UPDATED CONSTRAINED OPTIMIZAR FILE
% Extract UU (or u(k))
% end
```

- 6. Plot your control trajectories and the corresponding states for the constrained MPC problem.
- 7. Change your initial conditions and R, Q, r values and explain the corresponding outputs and plots.

References

[1] S. H. Żak, Systems and Control. New York: Oxford University Press, 2003