
THE UNIVERSITY OF TEXAS AT SAN ANTONIO
EE 5243
INTRODUCTION TO CYBER-PHYSICAL SYSTEMS

H O M E W O R K S # 6 + 7
Ahmad F. Taha

October 22, 2015

READ Homework Instructions:

1. Type your solutions. This homework is mainly a programming assignment.

2. This is a very long problem set. You have to start early and ask questions when (if) in doubt.

3. Due date: Tuesday, October, 27th, @ 5:00pm on Blackboard, AND drop off a copy of your solu-
tions (slip it under the office door if I’m away).

4. Collaboration policy: you cannot collaborate with anyone on this homework. It’s mainly a pro-
gramming exercise; you have to write your own codes.

5. Solutions that are unclear won’t be graded.

6. Before you start with this homework assignment, make sure that you have grasped the content
of Module 06.

7. This homework weighs twice as much a typical homework, as it’s a bit more time consuming and
you’re given more time to complete it.

8. You should include the codes in the submitted PDF as well as commented m-files, to be uploaded
on Blackboard.

The objective of this homework assignment is to teach you basic implementation of a model pre-
dictive control (MPC) engine for a nonlinear system. That is, using real-time measurements (outputs)
from the nonlinear dynamics of a system, the objective is to design an MPC that uses the linearized,
discretized version of the nonlinear system (read this sentence again and again).

This assignment is mainly a programming assignment. Thus, you will have to present well-commented
codes. You are also required to upload your codes to Blackboard, in addition to a ReadMe.txt file that
explains the structure of your files. Poorly developed codes WILL be poorly graded — whatever that
means!

1



The θ − R Robotic Manipulator

In this problem set, the dynamics of a nonlinear dynamical system — the θ − R robotic manipula-
tor — are summarized from [1]. The below figure shows a representation of the manipulator with a
simplistic lumped mass representation of the system. The dynamics of the manipulator are given as

Figure 1: Figure to the left shows the θ − R manipulator, whereas the figure to the right illustrate the
lumped mass representation; figures are taken from [1]. For more on the derivation of the state-space
representation of this dynamical system, the reader is referred to [1].

follows:

ẋ = f (x, u) =


ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
x4

−2m2x2x3x4 − g (m1r1 + m2x2) cos(x1) + u1

m1r2
1 + m2x2

2

x2
3x2 − g sin(x1) +

u2

m2

 , (1)

where:

• x1 = θ is the angle (see Figure 1);

• x2 = r is the varying radius (see Figure 1);

• x3 = θ̇ is the derivative of θ;

• x4 = ṙ is the derivative of x2;

• u1 = Tθ is the first control which is the torque;

• u2 = Fr is the second control input which is the translational force.

One of this assignment’s objective is to compute optimal control trajectories for u1 and u2 such that a
certain cost function is minimized, system dynamics are satisfied, and the controls are bounded. The
problems in this assignment are all related.

2



Problem 1 — Linearization and System Properties

Answer the following questions:

1. The following is given for this problem and subsequent ones:

(a) m1 = 10, m2 = 3, r1 = 1, g = 9.81

(b) Equilibrium point (that is generated by solving ẋ = 0) is: x>e =
[π

4
2 0 0

]>
.

Given the above, obtain ue =

[
ue1
ue2

]
— the equilibrium control. Recall that ẋ = f (xe, ue) = 0. You

can do this analytically or on MATLAB. The command solve can be useful.

2. For xe and the computed ue, obtain a linearized version of the nonlinear dynamics given in (1),
i.e., find matrices A and B. Your dynamics should have the following form:

∆ẋ(t) = A∆x(t) + B∆u(t), ∆x(t) = x(t)− xe, ∆u(t) = u(t)− ue.

You can do this analytically or on MATLAB (which is preferred). The command jacob and subs

can be useful. With that in mind, we will allow ourselves to abuse this notation and use ẋ =
Ax + Bu instead.

3. Assume that the output of the linearized system is simply x1 and x2 (not x1 + x2). What is your
C-matrix?

4. Write a MATLAB function that takes ANY A, B, C as inputs and generates a sequence of 1’s and
0’s that answers the following questions:

(a) Is the system asymptotically stable?

(b) Is the system controllable?

(c) Is the system observable?

(d) Is the system stabilizable?

(e) Is the system detectable?

Your function should work with any linearized system, i.e., for any dimensions and any state-
space matrices. You should use the PBH-test to get some of the answers above for your m-file. If
the answers to the above five questions are all ”Yes”, the output should be an array of 1’s (answer
= [1 1 1 1 1]). If the system satisfies all the properties besides detectability, your output should
be [1 1 1 1 0].

3



Problem 2 — Design of LSF and Observer Matrix Gains

1. If the linearized dynamical system is stabilizable, design a linear state-feedback matrix gain K
such that the eigenvalues of the closed-loop system are located at: [−2− 3− 4− 5].

2. If the linearized dynamical system is detectable, design a linear observer gain L such that the
eigenvalues of the closed-loop system are located at: [−2− 3− 4− 5].

4



Problem 3 — Dynamical Simulation Using an ODE Solver, Control
& Estimation

You will now simulate the performance of your system given a control law.

1. Develop a MATLAB file that depicts the trajectory or the behavior of the closed-loop system com-
prised of the state-feedback controller driving the nonlinear model of the robot for different
initial conditions. You will have to follow this procedure:

(a) Your given data should be: matrices A, B, C, K, L, vectors xe, ue, x0, and given system con-
stants (m1, m2, g, r1). You should have these quantities in the beginning of your m-file.

(b) Read about the ode45 solver on MATLAB, and know how to simulate the dynamics of any
nonlinear system. Here’s a Mathworks link: http://www.mathworks.com/help/matlab/

ref/ode45.html?refresh=true.

(c) Note that your control law is given by: ∆u = −K∆x, hence: u = −K∆x + ue

(d) Write a MATLAB function that represents the nonlinear dynamics of the manipulator. Name
the function ’thetaRdynamics.m’. If your control is constant, the function should look like
that:

function [dx]= thetaRdynamics(t,x)

% constants here

% matrix gains here

% constant vectors here

% Deltax = x - xe;

% Your control law here: u=-K Deltax + ue

% Your nonlinear dynamics here: dx = f(x,u)

end

(e) Specify your time-span to be: tspan=0:0.01:5 and call the ode45 solver when your initial
plant conditions are all zero.

(f) Plot the states trajectories (x1, x2, x3, x4) in addition to the two controls (u1, u2) for zero initial
conditions. Your plots should have lables, titles, legends. Ugly plots often receive ugly
reviews.

(g) Repeat (f) when you change your initial conditions. Start from random ones in this case.

(h) Using the computed matrix gain L, simulate the observer of the nonlinearized dynamical
system, that is:

˙̂x = Ax̂ + Bu + L(y− ŷ).

To do that, you will have to write a new m-file for the nonlinear dynamics, i.e., you’ll have
to write a file which you can call thetaRdynamics observer(t,x) (the size of x here is 8, as
it includes states of the nonlinear dynamics and the estimator) that dynamically simulates
the observer and then uses it for the ode45 solver.

i. Start from the following initial conditions: x>0 = [0.5π 1.5 0 0] and zero estimator
conditions.

ii. Illustrate through your plots that the estimator’s states are approaching the actual states,
generated from the ode45 solver.

iii. Repeat this experiment for different initial conditions of your choice.

5

http://www.mathworks.com/help/matlab/ref/ode45.html?refresh=true
http://www.mathworks.com/help/matlab/ref/ode45.html?refresh=true


Problem 4 — Unconstrained MPC for the Nonlinear System

In this problem, you will design an MPC for the nonlinear system, using the linearized dynamics of
the system. Read the instructions carefully.

1. First, write a MATLAB function that takes the following inputs: matrices A, B, C of a CT LTI
system, Np (prediction horizon, which we assume to be equal to the control horizon), and h (the
sampling period needed for discretization). This function should:

(a) Discretize the continuous system.
(b) Construct the augmented MPC dynamics (from Module 6).
(c) Compute matrices W, Z (Module 6).
(d) This function should be something like this:

function [W,Z,Ca,PhiA,GammaA] = MPCMATs(A,B,C,Np,h).
(e) Your function should work for any MIMO dynamical system of all sizes.

2. Using MPCMATs function, write another function that finds the optimal control ∆U:

(a) This function should be something like this:
function DU = optimizer(xa,A,B,C,R,Q,r,Np,h)

(b) This function obviously calls MPCMATs to generate Z, W
(c) Matrices Q, R are weight matrices discussed in Module 6, xa is the initial vector for the MPC

augmented system, and r is the reference signal.
(d) The output of this function is the optimal control for a predicted horizon.
(e) You have basically designed an MPC now without constraints on the control or states.

3. You will have to simulate the unconstrained MPC control law on the nonlinear continuous
model of the system. Do the following:

(a) The following is given:

Np = 40, h = 0.101, x>0 =
[
π/8 1 0 0

]
, y0 = Cx0, u0 = 0, Tf inal = 20

(b) The weight matrices and reference signals are:

R = diag(0.1, 0.1), Q = diag(4, 0.1), r =
[
−0.1
−0.2

]
Of course, the given reference signals and weight matrices will have much bigger sizes as
you should do consider the predicted horizon, and hence the given costs are for only one
time-step. The MATLAB commands kron and repmat should be helpful in generating the
actual Q, R and r — quantities that will be used for the optimizer function.

(c) Your simulation file should have the following structure (this is only a pseudo-code):

% All the constants

% All the matrices and initial conditions

% UU(:,1)=u0;

% for k=1:1:(Tfinal/h)

% tspan(:,k)=(k-1)*h:0.001:k*h;

% tt(k)=tspan(1,k);

% [t,X] = ode45(@thetaRdynamics,[(k-1)*h k*h],XX(:,k),options,ue+UU(:,k));

% Find x_a for the new iteration

% Find DU optimal for the new horizon using the optimizer function

% Extract UU (or u(k))

% end

(d) Plot the states trajectories (x1, x2, x3, x4) in addition to the two controls (u1, u2). Your plots
should have lables, titles, legends. Again, nasty plots get nasty reviews ;).

(e) Change your initial conditions and R, Q, r values and explain the corresponding outputs
and plots.

6



Problem 5 — Constrained MPC for the Nonlinear System

For this problem, we will resolve Problem 4 (with the exact same parameters, unless otherwise
specified), but with constraints on one of the state variables and control inputs.

1. In this problem, you will us the Matlab function quadprog to solve the constrained MPC problem.
First, teach yourself how quadprog works through any quadratic optimization example.

2. Assume that we require that the variable radius r (or y = x2) to be bounded as follows:

1 ≤ x ≤ 2 ⇒ 1 ≤ ∆x2 + xe2 ≤ 2⇒ 1− xe2 ≤ ∆x2 = ∆y ≤ 2− xe2 .

Start by formulating the bounded output problem in terms of ∆U, similar to the technique we
used in class.

3. Also, we will assume that controls are both bounded as follows:

0 ≤ U(k) ≤ 200 ∀k,

i.e., the torque and force can only be nonnegative quantities smaller or equal to 200 in magnitude.

4. What you have to change in this problem (from Problem 4) is the optimizer function (call the
new function optimizer con.m), as this function computes the optimal ∆U(k). In Problem 4,
U(k) and Y(k) were both unconstrained. Using quadprog, update your optimizer function such
that the bounds mentioned above are reflected in the MPC optimization. You should be very
careful when doing so, as we are operating on the equilibrium, linearized representation of
the system.

5. Your simulation file for the constrained MPC should have the following updated structure:

% All the constants

% All the matrices and initial conditions

% UU(:,1)=u0;

% for k=1:1:(Tfinal/h)

% tspan(:,k)=(k-1)*h:0.001:k*h;

% tt(k)=tspan(1,k);

% [t,X] = ode45(@thetaRdynamics,[(k-1)*h k*h],XX(:,k),options,ue+UU(:,k));

% Find x_a for the new iteration

% Find DU optimal for the new horizon using THE UPDATED CONSTRAINED OPTIMIZAR FILE

% Extract UU (or u(k))

% end

6. Plot your control trajectories and the corresponding states for the constrained MPC problem.

7. Change your initial conditions and R, Q, r values and explain the corresponding outputs and
plots.

References

[1] S. H. Żak, Systems and Control. New York: Oxford University Press, 2003

7


