Given the following plant dynamics:

$$\dot{x}_p = A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2$$

 $y = C_p x_p$, $x_p(0)$ not given

where $u_2(t)$ is the unknown input vector. The system consists of n states, m_1 known inputs, m_2 unknown inputs, and p measurable outputs. We want to design a dynamic unknown input observer (UIO) which takes the following form:

$$\dot{x}_c = A_c x_c + B_c^{(1)} y + B_c^{(2)} u_1,$$

 $\dot{x}_p = x_c + M y,$

The UIO is motivated by writing x_p as:

$$x_p = (I - MC_p)x_p + MC_px_p = x_c + My.$$

1. Assume that the updated x_c takes the following form:

$$x_c = (I - MC_p)x_p.$$

- (a) Find $\dot{x}_c = A_c x_c + B_c^{(1)} y + B_c^{(2)} u_1$,, where $A_c, B_c^{(1)}, B_c^{(2)}$ are matrices that you should determine, assuming that the unknown input vector is nullified and a convergence term is added to x_c , as discussed in class. Note that $\hat{x}_p = x_c + My$;
- (b) Derive the matrix equality that guarantees the nullification of $u_2(t)$.

Precisely, you should find A_c , $B_c^{(1)}$, $B_c^{(2)}$ in terms of A_p , $B_p^{(1)}$, C_p , M, L.

3. Derive the estimation error dynamics.